Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Developing a victorious strategy to the second strong gravitational lensing data challenge

Bom, C. R.; Fraga, B. M. O.; Dias, L. O.; Schubert, P.; Blanco Valentin, M.; Furlanetto, C.; Makler, MartínIcon ; Teles, K.; Portes De Albuquerque, M.; Metcalf, Benton
Fecha de publicación: 10/2022
Editorial: Wiley Blackwell Publishing, Inc
Revista: Monthly Notices of the Royal Astronomical Society
ISSN: 0035-8711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía; Otras Ciencias de la Computación e Información

Resumen

Strong lensing is a powerful probe of the matter distribution in galaxies and clusters and a relevant tool for cosmography. Analyses of strong gravitational lenses with deep learning have become a popular approach due to these astronomical objects' rarity and image complexity. Next-generation surveys will provide more opportunities to derive science from these objects and an increasing data volume to be analysed. However, finding strong lenses is challenging, as their number densities are orders of magnitude below those of galaxies. Therefore, specific strong lensing search algorithms are required to discover the highest number of systems possible with high purity and low false alarm rate. The need for better algorithms has prompted the development of an open community data science competition named strong gravitational lensing challenge (SGLC). This work presents the deep learning strategies and methodology used to design the highest scoring algorithm in the second SGLC (II SGLC). We discuss the approach used for this data set, the choice of a suitable architecture, particularly the use of a network with two branches to work with images in different resolutions, and its optimization. We also discuss the detectability limit, the lessons learned, and prospects for defining a tailor-made architecture in a survey in contrast to a general one. Finally, we release the models and discuss the best choice to easily adapt the model to a data set representing a survey with a different instrument. This work helps to take a step towards efficient, adaptable, and accurate analyses of strong lenses with deep learning frameworks.
Palabras clave: GRAVITATIONAL LENSING: STRONG , METHODS: NUMERICAL , TECHNIQUES: IMAGE PROCESSING
Ver el registro completo
 
Archivos asociados
Tamaño: 3.582Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/212761
URL: https://academic.oup.com/mnras/article/515/4/5121/6648839
DOI: http://dx.doi.org/10.1093/mnras/stac2047
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Citación
Bom, C. R.; Fraga, B. M. O.; Dias, L. O.; Schubert, P.; Blanco Valentin, M.; et al.; Developing a victorious strategy to the second strong gravitational lensing data challenge; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 515; 4; 10-2022; 5121-5134
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES