Artículo
Splitting the Riesz basis condition for systems of dilated functions through Dirichlet series
Fecha de publicación:
03/2022
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Inspired by the work of Hedenmalm, Lindqvist and Seip, we consider different properties of dilations systems of a fixed function φ∈L2(0,1). More precisely, we study when the system {φ(nx)}n is a Bessel sequence, a Riesz sequence, or it satisfies the lower frame bound. We are able to characterize these properties in terms of multipliers of the Hardy space H2 of Dirichlet series and, also, in terms of Hardy spaces on the infinite polytorus. We also address the multivariate case.
Palabras clave:
DILATION SYSTEMS
,
DIRICHLET SERIES
,
FRAME BOUNDS
,
RIESZ SEQUENCES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Antezana, Jorge Abel; Carando, Daniel Germán; Scotti, Melisa Carla; Splitting the Riesz basis condition for systems of dilated functions through Dirichlet series; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 507; 1; 3-2022; 1-20
Compartir
Altmétricas