Mostrar el registro sencillo del ítem

dc.contributor.author
Pinasco, Juan Pablo  
dc.contributor.author
Rodriguez Cartabia, Mauro  
dc.contributor.author
Saintier, Nicolas Bernard Claude  
dc.date.available
2023-09-20T16:25:02Z  
dc.date.issued
2022-01  
dc.identifier.citation
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; Interacting particles systems with delay and random delay differential equations; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 214; 1-2022; 1-26  
dc.identifier.issn
0362-546X  
dc.identifier.uri
http://hdl.handle.net/11336/212365  
dc.description.abstract
In this work we study a kinetic model of active particles with delayed dynamics, and its limit when the number of particles goes to infinity. This limit turns out to be related to delayed differential equations with random initial conditions. We analyze two different dynamics, one based on the full knowledge of the individual trajectories of each particle, and another one based only on the trace of the particle cloud, loosing track of the individual trajectories. Notice that in the first dynamic the state of a particles is its path, whereas it is simply a point in Rd in the second case. We analyze in both cases the corresponding mean-field dynamic obtaining an equation for the time evolution of the distribution of the particles states. Well-posedness of the equation is proved by a fixed-point argument. We conclude the paper with some possible future research directions and modeling applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FUNCTIONAL EQUATIONS  
dc.subject
KINETIC EQUATIONS  
dc.subject
MEAN FIELD MODELS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Interacting particles systems with delay and random delay differential equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:41:10Z  
dc.journal.volume
214  
dc.journal.pagination
1-26  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal Of Nonlinear Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X21001760  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.na.2021.112524