Artículo
Interacting particles systems with delay and random delay differential equations
Fecha de publicación:
01/2022
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Journal Of Nonlinear Analysis
ISSN:
0362-546X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we study a kinetic model of active particles with delayed dynamics, and its limit when the number of particles goes to infinity. This limit turns out to be related to delayed differential equations with random initial conditions. We analyze two different dynamics, one based on the full knowledge of the individual trajectories of each particle, and another one based only on the trace of the particle cloud, loosing track of the individual trajectories. Notice that in the first dynamic the state of a particles is its path, whereas it is simply a point in Rd in the second case. We analyze in both cases the corresponding mean-field dynamic obtaining an equation for the time evolution of the distribution of the particles states. Well-posedness of the equation is proved by a fixed-point argument. We conclude the paper with some possible future research directions and modeling applications.
Palabras clave:
FUNCTIONAL EQUATIONS
,
KINETIC EQUATIONS
,
MEAN FIELD MODELS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; Interacting particles systems with delay and random delay differential equations; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 214; 1-2022; 1-26
Compartir
Altmétricas