Mostrar el registro sencillo del ítem

dc.contributor.author
Poggio Fraccari, Eduardo Arístides  
dc.contributor.author
Damián, Caré  
dc.contributor.author
Mariño, Fernando Javier  
dc.date.available
2023-09-20T16:17:12Z  
dc.date.issued
2023-07  
dc.identifier.citation
Poggio Fraccari, Eduardo Arístides; Damián, Caré; Mariño, Fernando Javier; A comparison of deep learning models applied to Water Gas Shift catalysts for hydrogen purification; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 48; 64; 7-2023; 24742-24755  
dc.identifier.issn
0360-3199  
dc.identifier.uri
http://hdl.handle.net/11336/212357  
dc.description.abstract
As a consequence of the renewed interest in the Water Gas Shift reaction a great volume of information was produced. Since a traditional method like the reaction kinetics or mechanism are not capable of dealing with all this information, a deep learning model is convenient to explore to make useful predictions of catalysts performance. In the present work some novel features were included, a measure of reducibility, the crystal size, and the catalysts cost. The Principal Component Analysis indicated that the chosen features of the dataset were not redundant and the suggested novel features strongly influenced the most important components. A Random Forest Regressor was optimized and then trained in order to obtain the feature importance. An Artificial Neural Network was employed after a Grid Search optimization. This model was fed with different sizes of datasets in order to determine its effect on the accuracy of the predictions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
LINEAR REGRESSION  
dc.subject
RANDOM FOREST REGRESSOR  
dc.subject
WATER GAS SHIFT  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A comparison of deep learning models applied to Water Gas Shift catalysts for hydrogen purification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:40:17Z  
dc.journal.volume
48  
dc.journal.number
64  
dc.journal.pagination
24742-24755  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Poggio Fraccari, Eduardo Arístides. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Málaga; España  
dc.description.fil
Fil: Damián, Caré. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.description.fil
Fil: Mariño, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina  
dc.journal.title
International Journal of Hydrogen Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319922044536  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijhydene.2022.09.215