Mostrar el registro sencillo del ítem
dc.contributor.author
Poggio Fraccari, Eduardo Arístides
dc.contributor.author
Damián, Caré
dc.contributor.author
Mariño, Fernando Javier
dc.date.available
2023-09-20T16:17:12Z
dc.date.issued
2023-07
dc.identifier.citation
Poggio Fraccari, Eduardo Arístides; Damián, Caré; Mariño, Fernando Javier; A comparison of deep learning models applied to Water Gas Shift catalysts for hydrogen purification; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 48; 64; 7-2023; 24742-24755
dc.identifier.issn
0360-3199
dc.identifier.uri
http://hdl.handle.net/11336/212357
dc.description.abstract
As a consequence of the renewed interest in the Water Gas Shift reaction a great volume of information was produced. Since a traditional method like the reaction kinetics or mechanism are not capable of dealing with all this information, a deep learning model is convenient to explore to make useful predictions of catalysts performance. In the present work some novel features were included, a measure of reducibility, the crystal size, and the catalysts cost. The Principal Component Analysis indicated that the chosen features of the dataset were not redundant and the suggested novel features strongly influenced the most important components. A Random Forest Regressor was optimized and then trained in order to obtain the feature importance. An Artificial Neural Network was employed after a Grid Search optimization. This model was fed with different sizes of datasets in order to determine its effect on the accuracy of the predictions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORKS
dc.subject
LINEAR REGRESSION
dc.subject
RANDOM FOREST REGRESSOR
dc.subject
WATER GAS SHIFT
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A comparison of deep learning models applied to Water Gas Shift catalysts for hydrogen purification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:40:17Z
dc.journal.volume
48
dc.journal.number
64
dc.journal.pagination
24742-24755
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Poggio Fraccari, Eduardo Arístides. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina. Universidad de Málaga; España
dc.description.fil
Fil: Damián, Caré. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description.fil
Fil: Mariño, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnologías del Hidrogeno y Energias Sostenibles; Argentina
dc.journal.title
International Journal of Hydrogen Energy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319922044536
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijhydene.2022.09.215
Archivos asociados