Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A comparison of deep learning models applied to Water Gas Shift catalysts for hydrogen purification

Poggio Fraccari, Eduardo ArístidesIcon ; Damián, Caré; Mariño, Fernando JavierIcon
Fecha de publicación: 07/2023
Editorial: Pergamon-Elsevier Science Ltd
Revista: International Journal of Hydrogen Energy
ISSN: 0360-3199
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química; Ciencias de la Computación

Resumen

As a consequence of the renewed interest in the Water Gas Shift reaction a great volume of information was produced. Since a traditional method like the reaction kinetics or mechanism are not capable of dealing with all this information, a deep learning model is convenient to explore to make useful predictions of catalysts performance. In the present work some novel features were included, a measure of reducibility, the crystal size, and the catalysts cost. The Principal Component Analysis indicated that the chosen features of the dataset were not redundant and the suggested novel features strongly influenced the most important components. A Random Forest Regressor was optimized and then trained in order to obtain the feature importance. An Artificial Neural Network was employed after a Grid Search optimization. This model was fed with different sizes of datasets in order to determine its effect on the accuracy of the predictions.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , LINEAR REGRESSION , RANDOM FOREST REGRESSOR , WATER GAS SHIFT
Ver el registro completo
 
Archivos asociados
Tamaño: 2.546Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/212357
URL: https://www.sciencedirect.com/science/article/pii/S0360319922044536
DOI: http://dx.doi.org/10.1016/j.ijhydene.2022.09.215
Colecciones
Articulos(ITHES)
Articulos de INST. DE TECNOLOGIAS DEL HIDROGENO Y ENERGIAS SOSTENIBLES
Citación
Poggio Fraccari, Eduardo Arístides; Damián, Caré; Mariño, Fernando Javier; A comparison of deep learning models applied to Water Gas Shift catalysts for hydrogen purification; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 48; 64; 7-2023; 24742-24755
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES