Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng Yang M.; Wolf, Amy; Allen, Isabel Elaine; Salloway, Stephen; Chhatwal, Jasmeer; Brickman, Adam M.; Reyes Dumeyer, Dolly; Bateman, Randal J.; Benzinger, Tammie L.S.; Morris, John C.; Ances, Beau M.; Joseph Mathurin, Nelly; Perrin, Richard J.; Gordon, Brian A.; Levin, Johannes; Vöglein, Jonathan; Jucker, Mathias; la Fougère, Christian; Martins, Ralph N.; Sohrabi, Hamid R.; Taddei, Kevin; Villemagne, Victor L.; Schofield, Peter R.; Brooks, William S.; Fulham, Michael; Masters, Colin L.; Allegri, Ricardo FranciscoIcon
Fecha de publicación: 06/2021
Editorial: John Wiley & Sons
Revista: Alzheimers & Dementia
ISSN: 1552-5260
e-ISSN: 2352-8729
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurología Clínica

Resumen

Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.
Palabras clave: AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE , BRAIN ATROPHY , DOMINANTLY INHERITED ALZHEIMER NETWORK , PRECLINICAL ALZHEIMER'S DISEASE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 589.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/211950
DOI: http://dx.doi.org/10.1002/dad2.12197
URL: https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/dad2.12197
Colecciones
Articulos (INEU)
Articulos de INSTITUTO DE NEUROCIENCIAS
Citación
Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng Yang M.; et al.; Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease; John Wiley & Sons; Alzheimers & Dementia; 13; 1; 6-2021; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES