Mostrar el registro sencillo del ítem
dc.contributor.author
Angelini, Julia
dc.contributor.author
Bortolotto, Eugenia Belén
dc.contributor.author
Faviere, Gabriela Soledad
dc.contributor.author
Pairoba, Claudio Fabián
dc.contributor.author
Valentini, Gabriel Hugo
dc.contributor.author
Cervigni, Gerardo Domingo Lucio
dc.date.available
2023-09-15T12:10:17Z
dc.date.issued
2022-08
dc.identifier.citation
Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; et al.; Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials; Springer; Euphytica; 218; 8; 8-2022; 1-13
dc.identifier.issn
0014-2336
dc.identifier.uri
http://hdl.handle.net/11336/211616
dc.description.abstract
Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BLUP
dc.subject
GENETIC GAIN
dc.subject
GENOTYPE-BY-ENVIRONMENT INTERACTION
dc.subject
LINEAR MIXED MODEL
dc.subject
MULTIENVIRONMENT TRIALS
dc.subject
PEACH BREEDING
dc.subject.classification
Otros Tópicos Biológicos
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-05T12:18:33Z
dc.journal.volume
218
dc.journal.number
8
dc.journal.pagination
1-13
dc.journal.pais
Alemania
dc.description.fil
Fil: Angelini, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Bortolotto, Eugenia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Faviere, Gabriela Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.description.fil
Fil: Pairoba, Claudio Fabián. Universidad Nacional de Rosario; Argentina
dc.description.fil
Fil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Norte. Estacion Experimental Agropecuaria San Pedro. Agencia de Extension Rural San Pedro.; Argentina
dc.description.fil
Fil: Cervigni, Gerardo Domingo Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentina
dc.journal.title
Euphytica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10681-022-03063-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10681-022-03063-3
Archivos asociados