Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials

Angelini, JuliaIcon ; Bortolotto, Eugenia BelénIcon ; Faviere, Gabriela SoledadIcon ; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; Cervigni, Gerardo Domingo LucioIcon
Fecha de publicación: 08/2022
Editorial: Springer
Revista: Euphytica
ISSN: 0014-2336
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otros Tópicos Biológicos

Resumen

Identification of stable and high-yielding genotypes is a real challenge in peach breeding, since genotype-by-environment interaction (GE) masks the performance of the materials. The aim of this work was to evaluate the effectiveness of parameter estimation and genotype selection solving the linear mixed models (LMM) under frequentist and Bayesian approaches. Fruit yield of 308 peach genotypes were assessed under different seasons and replication numbers arranged in a completely randomized design. Under the frequentist framework the restricted maximum likelihood method to estimate variance component and genotypic prediction was used. Different models considering environment, genotype and GE effects according to the likelihood ratio test and Akaike information criteria were compared. In the Bayesian approach, the mean and the variance components were assumed to be random variables having a priori non-informative distributions with known parameters. According the deviance information criteria the most suitable Bayesian model was selected. The full model was the most appropriate to calculate parameters and genotypic predictions, which were very similar in both approaches. Due to imbalance data, Cullis’s method was the most appropriate to estimate heritability. It was calculated at 0.80, and selecting above 5% of the genotypes, the realized gain of 14.80 kg tree1 was attained. Genotypic frequentist and Bayesian predictions showed a positive correlation (r = 0.9991; P = 0.0001). Since the Bayesian method incorporates the credible interval for genetic parameters, genotypic Bayesian prediction would be a more useful tool than the frequentist approach and allowed the selection of 17 high-yielding and stable genotypes.
Palabras clave: BLUP , GENETIC GAIN , GENOTYPE-BY-ENVIRONMENT INTERACTION , LINEAR MIXED MODEL , MULTIENVIRONMENT TRIALS , PEACH BREEDING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.000Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/211616
URL: https://link.springer.com/article/10.1007/s10681-022-03063-3
DOI: http://dx.doi.org/10.1007/s10681-022-03063-3
Colecciones
Articulos(CEFOBI)
Articulos de CENTRO DE EST.FOTOSINTETICOS Y BIOQUIMICOS (I)
Citación
Angelini, Julia; Bortolotto, Eugenia Belén; Faviere, Gabriela Soledad; Pairoba, Claudio Fabián; Valentini, Gabriel Hugo; et al.; Parameter estimation and selection efficiency under Bayesian and frequentist approaches in peach trials; Springer; Euphytica; 218; 8; 8-2022; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES