Artículo
GlobalSearchRegression.jl: Building bridges between Machine Learning and Econometrics in Fat-Data scenarios
Panigo, Demian Tupac
; Gluzmann, Pablo Alfredo
; Mocskos, Esteban Eduardo
; Mauri Ungaro, Adán; Mari, Valentin; Monzon, Nicolás
Fecha de publicación:
06/2020
Editorial:
Juliacon
Revista:
Proceedings of the JuliaCon Conferences
ISSN:
2642-4029
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this paper is twofold. The first one is to describe a novel research-project designed for building bridges between machine learning and econometric worlds (ModelSelection.jl).The second one is to introduce the main characteristics and comparative performance of the first Julia-native all-subset regression algorithm included in GlobalSearchRegression.jl (v1.0.5). As other available alternatives, this algorithm allows researchers to obtain the best model specification among all possible covariate combinations - in terms of user defined information criteria-, but up to 3165 and 197 times faster than STATA and R alternatives, respectively.
Palabras clave:
PARALLEL COMPUTING
,
ECONOMETRICS
,
MACHINE LEARNING
,
FAT-DATA
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Panigo, Demian Tupac; Gluzmann, Pablo Alfredo; Mocskos, Esteban Eduardo; Mauri Ungaro, Adán; Mari, Valentin; et al.; GlobalSearchRegression.jl: Building bridges between Machine Learning and Econometrics in Fat-Data scenarios; Juliacon; Proceedings of the JuliaCon Conferences; 2; 53; 6-2020; 1-6
Compartir
Altmétricas