Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Flow shop scheduling problem with non-linear learning effects: A linear approximation scheme for non-technical users

Ferraro, Augusto; Rossit, Daniel AlejandroIcon ; Toncovich, Adrián Andrés
Fecha de publicación: 01/05/2023
Editorial: Elsevier Science
Revista: Journal of Computational and Applied Mathematics
ISSN: 0377-0427
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Scheduling problems with learning effect have taken a renewed interest in recent years due to increasingly personalized productions, leveraged by the capabilities provided by Industry 4.0. In this work, a learning effect problem described by an exponential curve proportional to the accumulated processing time in a flow shop type configuration was addressed. The objective to be minimized is the makespan. This problem is non-linear, which prevents it from being addressed by standard software such as spreadsheets and commercial MILP solvers. For overcoming this issue a linear approximation approach is proposed. This linear approximation approach consists in representing the exponential curve by a set of piecewise smooth lines. The parameterization of the piecewise smooth line can be solved with spreadsheet tools, using probabilistic models that implicitly provide information about the difficulty of modeling an exponential curve by means of straight lines. Then, a MILP model was generated based on this approximation scheme, which can be solved by standard solvers such as CPLEX or Gurobi. In turn, the problem was also modeled in its MINLP format, and it was solved with a state-of-the-art MINLP solver. The results show the improvement of the linear approximation solution with respect to the MINLP solution, where improvements greater than 10% are achieved in terms of makespan.
Palabras clave: FLOW SHOP SCHEDULING , LEARNING EFFECT , LINEAR APPROXIMATION , MAKESPAN , MIXED-INTEGER NON-LINEAR PROGRAMMING
Ver el registro completo
 
Archivos asociados
Tamaño: 526.0Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/211107
URL: https://www.sciencedirect.com/science/article/pii/S0377042722005817
DOI: http://dx.doi.org/10.1016/j.cam.2022.114983
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Ferraro, Augusto; Rossit, Daniel Alejandro; Toncovich, Adrián Andrés; Flow shop scheduling problem with non-linear learning effects: A linear approximation scheme for non-technical users; Elsevier Science; Journal of Computational and Applied Mathematics; 424; 1-5-2023; 1-14; 114983
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES