Mostrar el registro sencillo del ítem
dc.contributor.author
Ferraro, Augusto
dc.contributor.author
Rossit, Daniel Alejandro
dc.contributor.author
Toncovich, Adrián Andrés
dc.date.available
2023-09-11T15:11:17Z
dc.date.issued
2023-05-01
dc.identifier.citation
Ferraro, Augusto; Rossit, Daniel Alejandro; Toncovich, Adrián Andrés; Flow shop scheduling problem with non-linear learning effects: A linear approximation scheme for non-technical users; Elsevier Science; Journal of Computational and Applied Mathematics; 424; 1-5-2023; 1-14; 114983
dc.identifier.issn
0377-0427
dc.identifier.uri
http://hdl.handle.net/11336/211107
dc.description.abstract
Scheduling problems with learning effect have taken a renewed interest in recent years due to increasingly personalized productions, leveraged by the capabilities provided by Industry 4.0. In this work, a learning effect problem described by an exponential curve proportional to the accumulated processing time in a flow shop type configuration was addressed. The objective to be minimized is the makespan. This problem is non-linear, which prevents it from being addressed by standard software such as spreadsheets and commercial MILP solvers. For overcoming this issue a linear approximation approach is proposed. This linear approximation approach consists in representing the exponential curve by a set of piecewise smooth lines. The parameterization of the piecewise smooth line can be solved with spreadsheet tools, using probabilistic models that implicitly provide information about the difficulty of modeling an exponential curve by means of straight lines. Then, a MILP model was generated based on this approximation scheme, which can be solved by standard solvers such as CPLEX or Gurobi. In turn, the problem was also modeled in its MINLP format, and it was solved with a state-of-the-art MINLP solver. The results show the improvement of the linear approximation solution with respect to the MINLP solution, where improvements greater than 10% are achieved in terms of makespan.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FLOW SHOP SCHEDULING
dc.subject
LEARNING EFFECT
dc.subject
LINEAR APPROXIMATION
dc.subject
MAKESPAN
dc.subject
MIXED-INTEGER NON-LINEAR PROGRAMMING
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Flow shop scheduling problem with non-linear learning effects: A linear approximation scheme for non-technical users
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-24T14:29:24Z
dc.journal.volume
424
dc.journal.pagination
1-14; 114983
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Ferraro, Augusto. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur; Argentina
dc.journal.title
Journal of Computational and Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377042722005817
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cam.2022.114983
Archivos asociados