Mostrar el registro sencillo del ítem
dc.contributor.author
Merino, Gabriela Alejandra
dc.contributor.author
Saidi, Rabie
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Stegmayer, Georgina
dc.contributor.author
Martin, Maria J.
dc.date.available
2023-09-08T17:13:30Z
dc.date.issued
2022-08
dc.identifier.citation
Merino, Gabriela Alejandra; Saidi, Rabie; Milone, Diego Humberto; Stegmayer, Georgina; Martin, Maria J.; Hierarchical deep learning for predicting GO annotations by integrating protein knowledge; Oxford University Press; Bioinformatics (Oxford, England); 38; 19; 8-2022; 4488-4496
dc.identifier.issn
1367-4803
dc.identifier.uri
http://hdl.handle.net/11336/210988
dc.description.abstract
Motivation: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO) terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the exponential growth of data generated by high-throughput sequencing methods. Hence, researchers need reliable computational systems to help fill the gap with automatic function prediction. The results of the last Critical Assessment of Function Annotation challenge revealed that GO-terms prediction remains a very challenging task. Recent developments on deep learning are significantly breaking out the frontiers leading to new knowledge in protein research thanks to the integration of data from multiple sources. However, deep models hitherto developed for functional prediction are mainly focused on sequence data and have not achieved breakthrough performances yet. Results: We propose DeeProtGO, a novel deep-learning model for predicting GO annotations by integrating protein knowledge. DeeProtGO was trained for solving 18 different prediction problems, defined by the three GO sub-ontologies, the type of proteins, and the taxonomic kingdom. Our experiments reported higher prediction quality when more protein knowledge is integrated. We also benchmarked DeeProtGO against state-of-the-art methods on public datasets, and showed it can effectively improve the prediction of GO annotations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOMATIC FUNCTION PREDICTION
dc.subject
PROTEIN ANNOTATION
dc.subject
DEEP LEARNING
dc.subject
KNOWLEDGE INTEGRATION
dc.subject
GO TERMS PREDICTION
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Hierarchical deep learning for predicting GO annotations by integrating protein knowledge
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-07T14:57:47Z
dc.journal.volume
38
dc.journal.number
19
dc.journal.pagination
4488-4496
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Merino, Gabriela Alejandra. European Molecular Biology Laboratory. European Bioinformatics Institute.; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Saidi, Rabie. European Molecular Biology Laboratory. European Bioinformatics Institute.; Reino Unido
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Martin, Maria J.. European Molecular Biology Laboratory. European Bioinformatics Institute.; Reino Unido
dc.journal.title
Bioinformatics (Oxford, England)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btac536/6656346
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btac536
Archivos asociados