Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hierarchical deep learning for predicting GO annotations by integrating protein knowledge

Merino, Gabriela AlejandraIcon ; Saidi, Rabie; Milone, Diego HumbertoIcon ; Stegmayer, GeorginaIcon ; Martin, Maria J.
Fecha de publicación: 08/2022
Editorial: Oxford University Press
Revista: Bioinformatics (Oxford, England)
ISSN: 1367-4803
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Motivation: Experimental testing and manual curation are the most precise ways for assigning Gene Ontology (GO) terms describing protein functions. However, they are expensive, time-consuming and cannot cope with the exponential growth of data generated by high-throughput sequencing methods. Hence, researchers need reliable computational systems to help fill the gap with automatic function prediction. The results of the last Critical Assessment of Function Annotation challenge revealed that GO-terms prediction remains a very challenging task. Recent developments on deep learning are significantly breaking out the frontiers leading to new knowledge in protein research thanks to the integration of data from multiple sources. However, deep models hitherto developed for functional prediction are mainly focused on sequence data and have not achieved breakthrough performances yet. Results: We propose DeeProtGO, a novel deep-learning model for predicting GO annotations by integrating protein knowledge. DeeProtGO was trained for solving 18 different prediction problems, defined by the three GO sub-ontologies, the type of proteins, and the taxonomic kingdom. Our experiments reported higher prediction quality when more protein knowledge is integrated. We also benchmarked DeeProtGO against state-of-the-art methods on public datasets, and showed it can effectively improve the prediction of GO annotations.
Palabras clave: AUTOMATIC FUNCTION PREDICTION , PROTEIN ANNOTATION , DEEP LEARNING , KNOWLEDGE INTEGRATION , GO TERMS PREDICTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 817.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210988
URL: https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformati
DOI: http://dx.doi.org/10.1093/bioinformatics/btac536
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Merino, Gabriela Alejandra; Saidi, Rabie; Milone, Diego Humberto; Stegmayer, Georgina; Martin, Maria J.; Hierarchical deep learning for predicting GO annotations by integrating protein knowledge; Oxford University Press; Bioinformatics (Oxford, England); 38; 19; 8-2022; 4488-4496
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES