Mostrar el registro sencillo del ítem
dc.contributor.author
Xu, Xiaoling
dc.contributor.author
Marelli, Damian Edgardo
dc.contributor.author
Meng, Wei
dc.contributor.author
Zhang, Fumin
dc.contributor.author
Cai, Qianqian
dc.contributor.author
Fu, Minyue
dc.date.available
2023-09-04T17:35:17Z
dc.date.issued
2022-10
dc.identifier.citation
Xu, Xiaoling; Marelli, Damian Edgardo; Meng, Wei; Zhang, Fumin; Cai, Qianqian; et al.; Multi-MAV Autonomous Full Coverage Search in Cluttered Forest Environments; Springer; Journal of Intelligent & Robotic Systems; 106; 2; 10-2022; 1-20
dc.identifier.issn
0921-0296
dc.identifier.uri
http://hdl.handle.net/11336/210418
dc.description.abstract
This paper is concerned with autonomous forest full coverage search using multiple micro aerial vehicles (MAVs). Due to the complex and cluttered environment, i.e., many obstacles under the forest canopy, it is quite challenging to achieve full coverage search using fully autonomous MAVs, e.g., quadrotors. In this work, we propose a two-stage multi-MAV forest search strategy. The first batch of MAVs provides a coarse search and mapping result using pre-defined or auto-generated paths. Based on that, the second batch of MAVs continues to search the multiple isolated regions missed by the first batch. The main difficulties fall in the autonomous task allocation and optimal cooperative coverage path planning for the second batch of MAVs, to achieve the full coverage goal. To address this problem, a task allocation algorithm based on the branch and bound principle is introduced to find the optimal search order of the missed regions. Furthermore, an optimal coverage path planning algorithm considering obstacle avoidance is proposed to cover each region. Simulation results show that our proposed method improves the efficiency of coverage path planning for cooperative search and guarantees full area coverage.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONNECTED VEHICLES
dc.subject
COOPERATIVE SEARCH
dc.subject
FULL COVERAGE
dc.subject
MICRO AERIAL VEHICLES
dc.subject
TASK ALLOCATION
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Multi-MAV Autonomous Full Coverage Search in Cluttered Forest Environments
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-04T15:52:40Z
dc.journal.volume
106
dc.journal.number
2
dc.journal.pagination
1-20
dc.journal.pais
Alemania
dc.description.fil
Fil: Xu, Xiaoling. Guangdong University Of Technology; China
dc.description.fil
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Meng, Wei. Guangdong University Of Technology; China
dc.description.fil
Fil: Zhang, Fumin. No especifíca;
dc.description.fil
Fil: Cai, Qianqian. Guangdong University Of Technology; China
dc.description.fil
Fil: Fu, Minyue. Universidad de Newcastle; Australia
dc.journal.title
Journal of Intelligent & Robotic Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10846-022-01723-z
Archivos asociados