Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multi-MAV Autonomous Full Coverage Search in Cluttered Forest Environments

Xu, Xiaoling; Marelli, Damian EdgardoIcon ; Meng, Wei; Zhang, Fumin; Cai, Qianqian; Fu, Minyue
Fecha de publicación: 10/2022
Editorial: Springer
Revista: Journal of Intelligent & Robotic Systems
ISSN: 0921-0296
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

This paper is concerned with autonomous forest full coverage search using multiple micro aerial vehicles (MAVs). Due to the complex and cluttered environment, i.e., many obstacles under the forest canopy, it is quite challenging to achieve full coverage search using fully autonomous MAVs, e.g., quadrotors. In this work, we propose a two-stage multi-MAV forest search strategy. The first batch of MAVs provides a coarse search and mapping result using pre-defined or auto-generated paths. Based on that, the second batch of MAVs continues to search the multiple isolated regions missed by the first batch. The main difficulties fall in the autonomous task allocation and optimal cooperative coverage path planning for the second batch of MAVs, to achieve the full coverage goal. To address this problem, a task allocation algorithm based on the branch and bound principle is introduced to find the optimal search order of the missed regions. Furthermore, an optimal coverage path planning algorithm considering obstacle avoidance is proposed to cover each region. Simulation results show that our proposed method improves the efficiency of coverage path planning for cooperative search and guarantees full area coverage.
Palabras clave: CONNECTED VEHICLES , COOPERATIVE SEARCH , FULL COVERAGE , MICRO AERIAL VEHICLES , TASK ALLOCATION
Ver el registro completo
 
Archivos asociados
Tamaño: 5.330Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210418
DOI: http://dx.doi.org/10.1007/s10846-022-01723-z
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Xu, Xiaoling; Marelli, Damian Edgardo; Meng, Wei; Zhang, Fumin; Cai, Qianqian; et al.; Multi-MAV Autonomous Full Coverage Search in Cluttered Forest Environments; Springer; Journal of Intelligent & Robotic Systems; 106; 2; 10-2022; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES