Mostrar el registro sencillo del ítem

dc.contributor.author
Uribarri, Gonzalo  
dc.contributor.author
Mindlin, Bernardo Gabriel  
dc.date.available
2023-08-31T11:55:05Z  
dc.date.issued
2022-01  
dc.identifier.citation
Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; Dynamical time series embeddings in recurrent neural networks; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 154; 1-2022; 1-8  
dc.identifier.issn
0960-0779  
dc.identifier.uri
http://hdl.handle.net/11336/210013  
dc.description.abstract
Time series forecasting has historically been a key research problem in science and engineering. In recent years, machine learning algorithms have proven to be a very successful data-driven approach in this area. In particular, Recurrent Neural Networks (RNNs) represent the state-of-the-art algorithms in many sequential tasks. In this paper we train Long Short Term Memory networks (LSTM), which are a type of RNNs, to make predictions in time series corresponding to the observation of a single variable of a chaotic system. We show that, under certain conditions, networks learn to generate an embedding of the data in their inner sate that is topologically equivalent to the original strange attractor. Remarkably, this resembles standard forecasting methods from nonlinear science in which the time series is embedded in a multi-valued space using Takens's delay embedding mechanism.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DYNAMICAL SYSTEMS  
dc.subject
EMBEDDING  
dc.subject
FORECASTING  
dc.subject
RECURRENT NEURAL NETWORKS  
dc.subject
TIME SERIES  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Dynamical time series embeddings in recurrent neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:28:26Z  
dc.journal.volume
154  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Uribarri, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.journal.title
Chaos, Solitons And Fractals  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chaos.2021.111612