Mostrar el registro sencillo del ítem
dc.contributor.author
Uribarri, Gonzalo
dc.contributor.author
Mindlin, Bernardo Gabriel
dc.date.available
2023-08-31T11:55:05Z
dc.date.issued
2022-01
dc.identifier.citation
Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; Dynamical time series embeddings in recurrent neural networks; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 154; 1-2022; 1-8
dc.identifier.issn
0960-0779
dc.identifier.uri
http://hdl.handle.net/11336/210013
dc.description.abstract
Time series forecasting has historically been a key research problem in science and engineering. In recent years, machine learning algorithms have proven to be a very successful data-driven approach in this area. In particular, Recurrent Neural Networks (RNNs) represent the state-of-the-art algorithms in many sequential tasks. In this paper we train Long Short Term Memory networks (LSTM), which are a type of RNNs, to make predictions in time series corresponding to the observation of a single variable of a chaotic system. We show that, under certain conditions, networks learn to generate an embedding of the data in their inner sate that is topologically equivalent to the original strange attractor. Remarkably, this resembles standard forecasting methods from nonlinear science in which the time series is embedded in a multi-valued space using Takens's delay embedding mechanism.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DYNAMICAL SYSTEMS
dc.subject
EMBEDDING
dc.subject
FORECASTING
dc.subject
RECURRENT NEURAL NETWORKS
dc.subject
TIME SERIES
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Dynamical time series embeddings in recurrent neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:28:26Z
dc.journal.volume
154
dc.journal.pagination
1-8
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Uribarri, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.journal.title
Chaos, Solitons And Fractals
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chaos.2021.111612
Archivos asociados