Artículo
Dynamical time series embeddings in recurrent neural networks
Fecha de publicación:
01/2022
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Chaos, Solitons And Fractals
ISSN:
0960-0779
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Time series forecasting has historically been a key research problem in science and engineering. In recent years, machine learning algorithms have proven to be a very successful data-driven approach in this area. In particular, Recurrent Neural Networks (RNNs) represent the state-of-the-art algorithms in many sequential tasks. In this paper we train Long Short Term Memory networks (LSTM), which are a type of RNNs, to make predictions in time series corresponding to the observation of a single variable of a chaotic system. We show that, under certain conditions, networks learn to generate an embedding of the data in their inner sate that is topologically equivalent to the original strange attractor. Remarkably, this resembles standard forecasting methods from nonlinear science in which the time series is embedded in a multi-valued space using Takens's delay embedding mechanism.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; Dynamical time series embeddings in recurrent neural networks; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 154; 1-2022; 1-8
Compartir
Altmétricas