Mostrar el registro sencillo del ítem

dc.contributor.author
Cao, Mingming  
dc.contributor.author
Ibañez Firnkorn, Gonzalo Hugo  
dc.contributor.author
Rivera Ríos, Israel Pablo  
dc.contributor.author
Xue, Yali  
dc.contributor.author
Yabuta, Kôzô  
dc.date.available
2023-08-30T09:38:50Z  
dc.date.issued
2023-04-16  
dc.identifier.citation
Cao, Mingming; Ibañez Firnkorn, Gonzalo Hugo; Rivera Ríos, Israel Pablo; Xue, Yali; Yabuta, Kôzô; A class of multilinear bounded oscillation operators on measure spaces and applications; Springer; Mathematische Annalen; 2023; 16-4-2023; 1- 129  
dc.identifier.issn
0025-5831  
dc.identifier.uri
http://hdl.handle.net/11336/209840  
dc.description.abstract
In recent years, dyadic analysis has attracted a lot of attention due to the A2 conjecture. It has been well understood that in the Euclidean setting, Calderón–Zygmund operators can be pointwise controlled by a finite number of dyadic operators with a very simple structure, which leads to some significant weak and strong type inequalities. Similar results hold for Hardy–Littlewood maximal operators and Littlewood–Paley square operators. These owe to good dyadic structure of Euclidean spaces. Therefore, it is natural to wonder whether we could work in general measure spaces and find a universal framework to include these operators. In this paper, we develop a comprehensive weighted theory for a class of Banach-valued multilinear bounded oscillation operators on measure spaces, which merges multilinear Calderón–Zygmund operators with a quantity of operators beyond the multilinear Calderón–Zygmund theory. We prove that such multilinear operators and corresponding commutators are locally pointwise dominated by two sparse dyadic operators, respectively. We also establish three kinds of typical estimates: local exponential decay estimates, mixed weak type estimates, and sharp weighted norm inequalities. Beyond that, based on Rubio de Francia extrapolation for abstract multilinear compact operators, we obtain weighted compactness for commutators of specific multilinear operators on spaces of homogeneous type. A compact extrapolation allows us to get weighted estimates in the full range of exponents, while weighted interpolation for multilinear compact operators is crucial to the compact extrapolation. These are due to a weighted Fréchet–Kolmogorov theorem in the quasi-Banach range, which gives a characterization of relative compactness of subsets in weighted Lebesgue spaces. As applications, we illustrate multilinear bounded oscillation operators with examples including multilinear Hardy–Littlewood maximal operators on measure spaces, multilinear ω–Calderón–Zygmund operators on spaces of homogeneous type, multilinear Littlewood–Paley square operators, multilinear Fourier integral operators, higher order Calderón commutators, maximally modulated multilinear singular integrals, and q-variation of ω-Calderón–Zygmund operators.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BOUNDED OSCILLATION OPERATORS  
dc.subject
MEASURE SPACES  
dc.subject
RUBIO DE FRANCIA EXTRAPOLATION  
dc.subject
SHARP WEIGHTED NORM INEQUALITIES  
dc.subject
SPACES OF HOMOGENEOUS TYPE  
dc.subject
WEIGHTED COMPACTNESS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A class of multilinear bounded oscillation operators on measure spaces and applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-24T14:30:00Z  
dc.journal.volume
2023  
dc.journal.pagination
1- 129  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Cao, Mingming. Instituto de Ciencias Matemáticas; España  
dc.description.fil
Fil: Ibañez Firnkorn, Gonzalo Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad de Málaga; España  
dc.description.fil
Fil: Xue, Yali. Beijing Normal University; China  
dc.description.fil
Fil: Yabuta, Kôzô. Kwansei Gakuin University; Japón  
dc.journal.title
Mathematische Annalen  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00208-023-02619-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00208-023-02619-5