Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A class of multilinear bounded oscillation operators on measure spaces and applications

Cao, Mingming; Ibañez Firnkorn, Gonzalo HugoIcon ; Rivera Ríos, Israel PabloIcon ; Xue, Yali; Yabuta, Kôzô
Fecha de publicación: 16/04/2023
Editorial: Springer
Revista: Mathematische Annalen
ISSN: 0025-5831
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In recent years, dyadic analysis has attracted a lot of attention due to the A2 conjecture. It has been well understood that in the Euclidean setting, Calderón–Zygmund operators can be pointwise controlled by a finite number of dyadic operators with a very simple structure, which leads to some significant weak and strong type inequalities. Similar results hold for Hardy–Littlewood maximal operators and Littlewood–Paley square operators. These owe to good dyadic structure of Euclidean spaces. Therefore, it is natural to wonder whether we could work in general measure spaces and find a universal framework to include these operators. In this paper, we develop a comprehensive weighted theory for a class of Banach-valued multilinear bounded oscillation operators on measure spaces, which merges multilinear Calderón–Zygmund operators with a quantity of operators beyond the multilinear Calderón–Zygmund theory. We prove that such multilinear operators and corresponding commutators are locally pointwise dominated by two sparse dyadic operators, respectively. We also establish three kinds of typical estimates: local exponential decay estimates, mixed weak type estimates, and sharp weighted norm inequalities. Beyond that, based on Rubio de Francia extrapolation for abstract multilinear compact operators, we obtain weighted compactness for commutators of specific multilinear operators on spaces of homogeneous type. A compact extrapolation allows us to get weighted estimates in the full range of exponents, while weighted interpolation for multilinear compact operators is crucial to the compact extrapolation. These are due to a weighted Fréchet–Kolmogorov theorem in the quasi-Banach range, which gives a characterization of relative compactness of subsets in weighted Lebesgue spaces. As applications, we illustrate multilinear bounded oscillation operators with examples including multilinear Hardy–Littlewood maximal operators on measure spaces, multilinear ω–Calderón–Zygmund operators on spaces of homogeneous type, multilinear Littlewood–Paley square operators, multilinear Fourier integral operators, higher order Calderón commutators, maximally modulated multilinear singular integrals, and q-variation of ω-Calderón–Zygmund operators.
Palabras clave: BOUNDED OSCILLATION OPERATORS , MEASURE SPACES , RUBIO DE FRANCIA EXTRAPOLATION , SHARP WEIGHTED NORM INEQUALITIES , SPACES OF HOMOGENEOUS TYPE , WEIGHTED COMPACTNESS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.563Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209840
URL: https://link.springer.com/article/10.1007/s00208-023-02619-5
DOI: http://dx.doi.org/10.1007/s00208-023-02619-5
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cao, Mingming; Ibañez Firnkorn, Gonzalo Hugo; Rivera Ríos, Israel Pablo; Xue, Yali; Yabuta, Kôzô; A class of multilinear bounded oscillation operators on measure spaces and applications; Springer; Mathematische Annalen; 2023; 16-4-2023; 1- 129
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES