Mostrar el registro sencillo del ítem
dc.contributor.author
Garbarz, Alan Nicolás
dc.contributor.author
Palau, Gabriel Alexis
dc.date.available
2023-08-28T14:50:39Z
dc.date.issued
2022-07
dc.identifier.citation
Garbarz, Alan Nicolás; Palau, Gabriel Alexis; A note on Haag duality; Elsevier Science; Nuclear Physics B; 980; 7-2022; 1-45
dc.identifier.issn
0550-3213
dc.identifier.uri
http://hdl.handle.net/11336/209546
dc.description.abstract
Haag duality is a remarkable property in QFT stating that the commutant of the algebra of observables localized in some region of spacetime is exactly the algebra associated to the causally disconnected region. It is a strong condition on the local structure and has direct consequences on entanglement measures. It was first shown to hold for a free scalar field and causal diamonds by Araki in 1964 and later by many authors in different ways. In particular, Eckmann and Osterwalder (EO) used Tomita-Takesaki modular theory to give a direct proof. However, it is not straightforward to relate this proof to the works of Araki, since they rely on two forms of the canonical commutation relations (CCR), called Segal and Weyl formulations, while EO work as starting point assumes that duality holds in the so-called “first quantization” in the Weyl formulation. It is our purpose to first introduce the works of Araki in a more easy-to-read but still rigorous and self-contained fashion, and show how Haag duality is stated in the Segal and Weyl formulations and in both first and second quantizations (and their immediate combination). This permits to understand the setting of the EO proof of Haag duality. There is nothing essentially new in this manuscript, with the exception of what we consider a simplification of EO proof that uses the adjoint S⁎ of the Tomita operator S instead of introducing several auxiliary operators. We hope this note will be useful for those seeking to understand where Haag duality comes from in a free scalar QFT.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
QFT
dc.subject
HAAG DUALILTY
dc.subject
ALGEBRA
dc.subject.classification
Física de Partículas y Campos
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A note on Haag duality
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:26:26Z
dc.journal.volume
980
dc.journal.pagination
1-45
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Garbarz, Alan Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Palau, Gabriel Alexis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.journal.title
Nuclear Physics B
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0550321322001481
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.nuclphysb.2022.115797
Archivos asociados