Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A note on Haag duality

Garbarz, Alan NicolásIcon ; Palau, Gabriel Alexis
Fecha de publicación: 07/2022
Editorial: Elsevier Science
Revista: Nuclear Physics B
ISSN: 0550-3213
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

Haag duality is a remarkable property in QFT stating that the commutant of the algebra of observables localized in some region of spacetime is exactly the algebra associated to the causally disconnected region. It is a strong condition on the local structure and has direct consequences on entanglement measures. It was first shown to hold for a free scalar field and causal diamonds by Araki in 1964 and later by many authors in different ways. In particular, Eckmann and Osterwalder (EO) used Tomita-Takesaki modular theory to give a direct proof. However, it is not straightforward to relate this proof to the works of Araki, since they rely on two forms of the canonical commutation relations (CCR), called Segal and Weyl formulations, while EO work as starting point assumes that duality holds in the so-called “first quantization” in the Weyl formulation. It is our purpose to first introduce the works of Araki in a more easy-to-read but still rigorous and self-contained fashion, and show how Haag duality is stated in the Segal and Weyl formulations and in both first and second quantizations (and their immediate combination). This permits to understand the setting of the EO proof of Haag duality. There is nothing essentially new in this manuscript, with the exception of what we consider a simplification of EO proof that uses the adjoint S⁎ of the Tomita operator S instead of introducing several auxiliary operators. We hope this note will be useful for those seeking to understand where Haag duality comes from in a free scalar QFT.
Palabras clave: QFT , HAAG DUALILTY , ALGEBRA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 979.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209546
URL: https://www.sciencedirect.com/science/article/pii/S0550321322001481
DOI: https://doi.org/10.1016/j.nuclphysb.2022.115797
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Garbarz, Alan Nicolás; Palau, Gabriel Alexis; A note on Haag duality; Elsevier Science; Nuclear Physics B; 980; 7-2022; 1-45
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES