Mostrar el registro sencillo del ítem

dc.contributor.author
Ferraro, Diego Omar  
dc.contributor.author
de Paula, Rodrigo  
dc.date.available
2023-08-28T14:47:24Z  
dc.date.issued
2022-05  
dc.identifier.citation
Ferraro, Diego Omar; de Paula, Rodrigo; A fuzzy knowledge-based model for assessing risk of pesticides into the air in cropping systems; Elsevier; Science of the Total Environment; 820; 5-2022; 1-12  
dc.identifier.issn
0048-9697  
dc.identifier.uri
http://hdl.handle.net/11336/209538  
dc.description.abstract
Pesticide use in current cropping systems has become a key input to improve productivity. However, their potential risk to nature demands tools for designing a sustainable use. In this work, a fuzzy knowledge-based model was developed for assessing risk of pesticides into the air. The model was based on fuzzy logic theory which provides a means for representing uncertainty by including knowledge about different processes related to pesticide dynamics using functions, control rules and logical inference systems. All these elements were built through a literature review. Results from the sensitivity analysis on the final model structure showed that the Henry's law constant was the most influential input variable related to the active ingredient identity, while the most influential management and environmental input variables on the pesticide air risk values were the droplet size together with the application method and the current wet bulb temperature depression value, respectively. Results from an independent model validation showed a significant goodness-of-fit between the simulated risk of drift and volatilization and the observed values under experimental conditions. Long-term simulations in a real soybean production system in Argentina showed results of drift reduction in post-emergence conditions of the crop under aerial application condition, and a significant effect of the identity of the active ingredient in the risk values. Simulated risk values from the developed model allow to identify ex ante the combination of agronomic decisions, together with environmental conditions that can reduce the risk of pesticides in the air in real production systems. Further combination with ecotoxicological classification tools should improve pesticide use assessment in agricultural systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARGENTINA  
dc.subject
FUZZY LOGIC  
dc.subject
PESTICIDES  
dc.subject
RISK ASSESSMENT  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
A fuzzy knowledge-based model for assessing risk of pesticides into the air in cropping systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-28T10:35:10Z  
dc.journal.volume
820  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: de Paula, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.journal.title
Science of the Total Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969722002480  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.scitotenv.2022.153158