Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A fuzzy knowledge-based model for assessing risk of pesticides into the air in cropping systems

Ferraro, Diego OmarIcon ; de Paula, Rodrigo
Fecha de publicación: 05/2022
Editorial: Elsevier
Revista: Science of the Total Environment
ISSN: 0048-9697
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Pesticide use in current cropping systems has become a key input to improve productivity. However, their potential risk to nature demands tools for designing a sustainable use. In this work, a fuzzy knowledge-based model was developed for assessing risk of pesticides into the air. The model was based on fuzzy logic theory which provides a means for representing uncertainty by including knowledge about different processes related to pesticide dynamics using functions, control rules and logical inference systems. All these elements were built through a literature review. Results from the sensitivity analysis on the final model structure showed that the Henry's law constant was the most influential input variable related to the active ingredient identity, while the most influential management and environmental input variables on the pesticide air risk values were the droplet size together with the application method and the current wet bulb temperature depression value, respectively. Results from an independent model validation showed a significant goodness-of-fit between the simulated risk of drift and volatilization and the observed values under experimental conditions. Long-term simulations in a real soybean production system in Argentina showed results of drift reduction in post-emergence conditions of the crop under aerial application condition, and a significant effect of the identity of the active ingredient in the risk values. Simulated risk values from the developed model allow to identify ex ante the combination of agronomic decisions, together with environmental conditions that can reduce the risk of pesticides in the air in real production systems. Further combination with ecotoxicological classification tools should improve pesticide use assessment in agricultural systems.
Palabras clave: ARGENTINA , FUZZY LOGIC , PESTICIDES , RISK ASSESSMENT
Ver el registro completo
 
Archivos asociados
Tamaño: 1.373Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209538
URL: https://www.sciencedirect.com/science/article/pii/S0048969722002480
DOI: http://dx.doi.org/10.1016/j.scitotenv.2022.153158
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Ferraro, Diego Omar; de Paula, Rodrigo; A fuzzy knowledge-based model for assessing risk of pesticides into the air in cropping systems; Elsevier; Science of the Total Environment; 820; 5-2022; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES