Mostrar el registro sencillo del ítem
dc.contributor.author
Rincon Soler, Anderson Ivan
dc.contributor.author
Arini, Pedro David
dc.contributor.author
Caracciolo, Santiago Federico
dc.contributor.author
Bonomini, Maria Paula
dc.date.available
2023-08-28T14:47:06Z
dc.date.issued
2022
dc.identifier.citation
Evaluation of a Gaussian Mixture Model forgenerating synthetic ECG signals during anangioplasty procedure; 9th International Work-Conference on the Interplay between Natural and Artificial Computation; Tenerife; España; 2022; 567-575
dc.identifier.isbn
978-3-031-06241-4
dc.identifier.uri
http://hdl.handle.net/11336/209536
dc.description.abstract
Mathematical models have intensively been used in the generation of synthetic electrocardiogram (ECG) signals. They are used to test and optimize different algorithms for patient monitoring and heart disease detection. In this work, we present a Gaussian mixture model that allows the generation of heartbeats with ischemic alterations, induced by an occlusion procedure performed in the right coronary artery. Realizations obtained using the Gaussian mixture model were compared against real signals using cross-correlation, obtaining average values equal to 94.2%. Confidence intervals, at 99% level, calculated using ST values from the synthesized heartbeats agreed with the real ST values in 100% cases for each group (ECG Lead and ST-level). In this sense, the model proposed allows the synthesis of heartbeats with complex morphologies that cannot be obtained with more traditional models.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HEARTBEAT SYNTHESIS
dc.subject
CORONARY ARTERY OCCLUSION
dc.subject
REVERSIBLE MYOCARDIAL ISCHEMIA
dc.subject
NON-SUPERVISED CLASSIFICATION
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Evaluation of a Gaussian Mixture Model forgenerating synthetic ECG signals during anangioplasty procedure
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-06-16T18:00:36Z
dc.journal.pagination
567-575
dc.journal.pais
Alemania
dc.journal.ciudad
Alemania
dc.description.fil
Fil: Rincon Soler, Anderson Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Arini, Pedro David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Caracciolo, Santiago Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-06242-1_56
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-06242-1_56
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
9th International Work-Conference on the Interplay between Natural and Artificial Computation
dc.date.evento
2022-06-03
dc.description.ciudadEvento
Tenerife
dc.description.paisEvento
España
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad de La Laguna
dc.description.institucionOrganizadora
Universidad Nacional de Educación a Distancia
dc.description.institucionOrganizadora
Universidad Politécnica de Cartagena
dc.source.libro
Artificial intelligence in neuroscience: affective analysis and health applications
dc.type
Conferencia
Archivos asociados