Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Evaluation of a Gaussian Mixture Model forgenerating synthetic ECG signals during anangioplasty procedure

Rincon Soler, Anderson IvanIcon ; Arini, Pedro DavidIcon ; Caracciolo, Santiago FedericoIcon ; Bonomini, Maria PaulaIcon
Tipo del evento: Conferencia
Nombre del evento: 9th International Work-Conference on the Interplay between Natural and Artificial Computation
Fecha del evento: 03/06/2022
Institución Organizadora: Universidad de La Laguna; Universidad Nacional de Educación a Distancia; Universidad Politécnica de Cartagena;
Título del Libro: Artificial intelligence in neuroscience: affective analysis and health applications
Editorial: Springer Verlag Berlín
ISBN: 978-3-031-06241-4
Idioma: Inglés
Clasificación temática:
Ingeniería Médica

Resumen

Mathematical models have intensively been used in the generation of synthetic electrocardiogram (ECG) signals. They are used to test and optimize different algorithms for patient monitoring and heart disease detection. In this work, we present a Gaussian mixture model that allows the generation of heartbeats with ischemic alterations, induced by an occlusion procedure performed in the right coronary artery. Realizations obtained using the Gaussian mixture model were compared against real signals using cross-correlation, obtaining average values equal to 94.2%. Confidence intervals, at 99% level, calculated using ST values from the synthesized heartbeats agreed with the real ST values in 100% cases for each group (ECG Lead and ST-level). In this sense, the model proposed allows the synthesis of heartbeats with complex morphologies that cannot be obtained with more traditional models.
Palabras clave: HEARTBEAT SYNTHESIS , CORONARY ARTERY OCCLUSION , REVERSIBLE MYOCARDIAL ISCHEMIA , NON-SUPERVISED CLASSIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 573.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/209536
URL: https://link.springer.com/chapter/10.1007/978-3-031-06242-1_56
DOI: https://doi.org/10.1007/978-3-031-06242-1_56
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Evaluation of a Gaussian Mixture Model forgenerating synthetic ECG signals during anangioplasty procedure; 9th International Work-Conference on the Interplay between Natural and Artificial Computation; Tenerife; España; 2022; 567-575
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES