Evento
Evaluation of a Gaussian Mixture Model forgenerating synthetic ECG signals during anangioplasty procedure
Rincon Soler, Anderson Ivan
; Arini, Pedro David
; Caracciolo, Santiago Federico
; Bonomini, Maria Paula
Tipo del evento:
Conferencia
Nombre del evento:
9th International Work-Conference on the Interplay between Natural and Artificial Computation
Fecha del evento:
03/06/2022
Institución Organizadora:
Universidad de La Laguna;
Universidad Nacional de Educación a Distancia;
Universidad Politécnica de Cartagena;
Título del Libro:
Artificial intelligence in neuroscience: affective analysis and health applications
Editorial:
Springer Verlag Berlín
ISBN:
978-3-031-06241-4
Idioma:
Inglés
Clasificación temática:
Resumen
Mathematical models have intensively been used in the generation of synthetic electrocardiogram (ECG) signals. They are used to test and optimize different algorithms for patient monitoring and heart disease detection. In this work, we present a Gaussian mixture model that allows the generation of heartbeats with ischemic alterations, induced by an occlusion procedure performed in the right coronary artery. Realizations obtained using the Gaussian mixture model were compared against real signals using cross-correlation, obtaining average values equal to 94.2%. Confidence intervals, at 99% level, calculated using ST values from the synthesized heartbeats agreed with the real ST values in 100% cases for each group (ECG Lead and ST-level). In this sense, the model proposed allows the synthesis of heartbeats with complex morphologies that cannot be obtained with more traditional models.
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Evaluation of a Gaussian Mixture Model forgenerating synthetic ECG signals during anangioplasty procedure; 9th International Work-Conference on the Interplay between Natural and Artificial Computation; Tenerife; España; 2022; 567-575
Compartir
Altmétricas