Mostrar el registro sencillo del ítem

dc.contributor.author
González, Marcela Hebe  
dc.contributor.author
Rolla, Alfredo Luis  
dc.date.available
2023-08-22T17:43:48Z  
dc.date.issued
2022-09  
dc.identifier.citation
González, Marcela Hebe; Rolla, Alfredo Luis; Data mining techniques applied to statistical prediction of monthly precipitation in Gran Chaco Argentina; Springer Wien; Theory & Application Climatology; 150; 3-4; 9-2022; 1027-1043  
dc.identifier.issn
0177-798X  
dc.identifier.uri
http://hdl.handle.net/11336/208940  
dc.description.abstract
Data mining techniques are currently a powerful tool to address with the seasonal time-scales forecasting. In this work, neural networks, support vector regression and generalized additive models are considered besides the most commonly used multiple linear regression methodology, to obtain precipitation forecasting models in the area of “Gran Chaco Argentino”. The results indicate that data mining techniques improve forecasts derived from other methodologies, although the efficiency of the different methodologies is highly dependent on the month and the region. The non-linear techniques improve the forecasts and show lower mean square error than the multiple linear regression and support vector regression. The root mean square error is higher east of study area than in the west because precipitation is higher. The coefficient of variation is quite low in all the months in the central and southwest parts of the area. The precipitation interval with the highest probability of occurrence showed a value of 1.5. In addition, the possibility of generating ensemble means of several models and deriving categorical forecasts is a highly advisable alternative for prediction in this region of Argentina. The use of ensemble means is recommended. The derived forecasts improve the dynamic world center models only in some regions of the study area.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Wien  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
precipitation  
dc.subject
data mining  
dc.subject
seasonal forecast  
dc.subject
chaco region  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Data mining techniques applied to statistical prediction of monthly precipitation in Gran Chaco Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T22:24:40Z  
dc.journal.volume
150  
dc.journal.number
3-4  
dc.journal.pagination
1027-1043  
dc.journal.pais
Austria  
dc.description.fil
Fil: González, Marcela Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Rolla, Alfredo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.journal.title
Theory & Application Climatology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00704-022-04209-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00704-022-04209-y