Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Data mining techniques applied to statistical prediction of monthly precipitation in Gran Chaco Argentina

González, Marcela HebeIcon ; Rolla, Alfredo LuisIcon
Fecha de publicación: 09/2022
Editorial: Springer Wien
Revista: Theory & Application Climatology
ISSN: 0177-798X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Data mining techniques are currently a powerful tool to address with the seasonal time-scales forecasting. In this work, neural networks, support vector regression and generalized additive models are considered besides the most commonly used multiple linear regression methodology, to obtain precipitation forecasting models in the area of “Gran Chaco Argentino”. The results indicate that data mining techniques improve forecasts derived from other methodologies, although the efficiency of the different methodologies is highly dependent on the month and the region. The non-linear techniques improve the forecasts and show lower mean square error than the multiple linear regression and support vector regression. The root mean square error is higher east of study area than in the west because precipitation is higher. The coefficient of variation is quite low in all the months in the central and southwest parts of the area. The precipitation interval with the highest probability of occurrence showed a value of 1.5. In addition, the possibility of generating ensemble means of several models and deriving categorical forecasts is a highly advisable alternative for prediction in this region of Argentina. The use of ensemble means is recommended. The derived forecasts improve the dynamic world center models only in some regions of the study area.
Palabras clave: precipitation , data mining , seasonal forecast , chaco region
Ver el registro completo
 
Archivos asociados
Tamaño: 3.911Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/208940
URL: https://link.springer.com/10.1007/s00704-022-04209-y
DOI: http://dx.doi.org/10.1007/s00704-022-04209-y
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Citación
González, Marcela Hebe; Rolla, Alfredo Luis; Data mining techniques applied to statistical prediction of monthly precipitation in Gran Chaco Argentina; Springer Wien; Theory & Application Climatology; 150; 3-4; 9-2022; 1027-1043
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES