Mostrar el registro sencillo del ítem

dc.contributor.author
Cornejo, Juan Manuel  
dc.contributor.author
Sankappanavar, Hanamantagouda P.  
dc.date.available
2023-08-22T15:11:31Z  
dc.date.issued
2021-11  
dc.identifier.citation
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Birkhoff Systems; University of Hatef; Journal of Algebraic Hyperstructures and Logical Algebras; 2; 4; 11-2021; 1-12  
dc.identifier.issn
2676-6000  
dc.identifier.uri
http://hdl.handle.net/11336/208883  
dc.description.abstract
An algebra A = hA, →, 0i, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x → y) → z ≈ [(z 0 → x) → (y → z) 0 ] 0 , where x 0 := x → 0, and 000 ≈ 0. These algebras generalize De Morgan algebras and ∨-semilattices with zero. Let I denote the variety of implication zroupoids. The investigations into the structure of I and of the lattice of subvarieties of I, begun in 2012, have continued in several papers (see the Bibliography at the end of the paper). The present paper is a sequel to that series of papers and is devoted to making further contributions to the theory of implication zroupoids. The main purpose of this paper is to prove that if A is an algebra in the variety I, then the derived algebra Amj := hA; ∧, ∨i, where a ∧ b := (a → b 0 ) 0 and a ∨ b := (a 0 ∧ b 0 ) 0 , satisfies the Birkhoff’s identity (BR): x ∧ (x ∨ y) ≈ x ∨ (x ∧ y). As a consequence, the implication zroupoids A whose derived algebras Amj are Birkhoff systems are characterized. Another interesting consequence of the main result is that there are bisemigroups that are not bisemilattices but satisfy the Birkhoff’s identity, which leads us naturally to define the variety of ”Birkhoff bisemigroups” as bisemigroups satisfying the Birkhoff identity, as a generalization of Birkhoff systems. The paper concludes with some open problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
University of Hatef  
dc.relation
https://ri.conicet.gov.ar/handle/11336/60697  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Implication zroupoids  
dc.subject
Birkhoff Systems  
dc.subject
Symmetric implication zroupoid  
dc.subject
Bisemigroup  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Implication Zroupoids and Birkhoff Systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-14T15:31:35Z  
dc.identifier.eissn
2676-6019  
dc.journal.volume
2  
dc.journal.number
4  
dc.journal.pagination
1-12  
dc.journal.pais
Irán  
dc.journal.ciudad
Hatef  
dc.description.fil
Fil: Cornejo, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.description.fil
Fil: Sankappanavar, Hanamantagouda P.. State University of New York; Estados Unidos  
dc.journal.title
Journal of Algebraic Hyperstructures and Logical Algebras  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jahla.hatef.ac.ir/article_130810.html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.52547/HATEF.JAHLA.2.4.1