Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Implication Zroupoids and Birkhoff Systems

Cornejo, Juan ManuelIcon ; Sankappanavar, Hanamantagouda P.
Fecha de publicación: 11/2021
Editorial: University of Hatef
Revista: Journal of Algebraic Hyperstructures and Logical Algebras
ISSN: 2676-6000
e-ISSN: 2676-6019
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

An algebra A = hA, →, 0i, where → is binary and 0 is a constant, is called an implication zroupoid (I-zroupoid, for short) if A satisfies the identities: (x → y) → z ≈ [(z 0 → x) → (y → z) 0 ] 0 , where x 0 := x → 0, and 000 ≈ 0. These algebras generalize De Morgan algebras and ∨-semilattices with zero. Let I denote the variety of implication zroupoids. The investigations into the structure of I and of the lattice of subvarieties of I, begun in 2012, have continued in several papers (see the Bibliography at the end of the paper). The present paper is a sequel to that series of papers and is devoted to making further contributions to the theory of implication zroupoids. The main purpose of this paper is to prove that if A is an algebra in the variety I, then the derived algebra Amj := hA; ∧, ∨i, where a ∧ b := (a → b 0 ) 0 and a ∨ b := (a 0 ∧ b 0 ) 0 , satisfies the Birkhoff’s identity (BR): x ∧ (x ∨ y) ≈ x ∨ (x ∧ y). As a consequence, the implication zroupoids A whose derived algebras Amj are Birkhoff systems are characterized. Another interesting consequence of the main result is that there are bisemigroups that are not bisemilattices but satisfy the Birkhoff’s identity, which leads us naturally to define the variety of ”Birkhoff bisemigroups” as bisemigroups satisfying the Birkhoff identity, as a generalization of Birkhoff systems. The paper concludes with some open problems.
Palabras clave: Implication zroupoids , Birkhoff Systems , Symmetric implication zroupoid , Bisemigroup
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 459.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/208883
URL: http://jahla.hatef.ac.ir/article_130810.html
DOI: https://doi.org/10.52547/HATEF.JAHLA.2.4.1
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Cornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Implication Zroupoids and Birkhoff Systems; University of Hatef; Journal of Algebraic Hyperstructures and Logical Algebras; 2; 4; 11-2021; 1-12
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo On derived algebras and subvarieties of implication zroupoids
    Cornejo, Juan Manuel ; Sankappanavar, Hanamantagouda P. (Springer Verlag Berlín, 2017-12-01)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES