Mostrar el registro sencillo del ítem
dc.contributor.author
Fernandez, Ariel
dc.date.available
2023-08-18T18:29:16Z
dc.date.issued
2022
dc.identifier.citation
Fernandez, Ariel; Topological Dynamics for Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies; CRC Press - Taylor & Francis Group; 1; 2022; 228
dc.identifier.isbn
9781032366326
dc.identifier.uri
http://hdl.handle.net/11336/208775
dc.description.abstract
The leveraging of artificial intelligence (AI), dynamical systems have found a fertile ground for development. Machine learning is currently discovering models that provide the physical underpinnings of time series data. However, such heavily parametrized models hardly ever yield physical laws. The problem becomes daunting as we turn to the multiscale complexities of biology, biomedicine or cosmology. This book addresses this imperative as it takes the problem of AI-based model discovery to the next level where “machine intuition” is operationally defined as recognizer of rough patterns within a hierarchical representation of the time series. Thus, the book introduces topological methods that enable metamodel discovery and the proper computational tools to decode the metamodel into a relevant inferential framework that ultimately yields physical laws. Parsimonious models are traditionally cast as “sparse systems of differential equations on latent coordinates”. As this book argues, this is not the format typically adopted by AI, given the “dimensionality curse” associated with complex realities. AI demands a paradigm shift, with dynamic information translated into metamodels based on AI-interpretable patterns. These methods advance model discovery, enabling reverse engineering of time series arising from vastly complex realities that are commonplace in a broad range of fields, from biology to cosmology.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
CRC Press - Taylor & Francis Group
dc.rights
info:eu-repo/semantics/closedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Topology
dc.subject
Dynamical Systems
dc.subject
Artificial Intelligence
dc.subject
Cosmology
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Topological Dynamics for Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/book
dc.type
info:ar-repo/semantics/libro
dc.date.updated
2023-07-06T21:24:15Z
dc.journal.volume
1
dc.journal.pagination
228
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1201/9781003333012
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.routledge.com/Topological-Dynamics-in-Metamodel-Discovery-with-Artificial-Intelligence/Fernandez/p/book/9781032366326
Archivos asociados
Tamaño:
33.65Mb
Formato:
PDF