Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez, Ariel  
dc.date.available
2023-08-18T18:29:16Z  
dc.date.issued
2022  
dc.identifier.citation
Fernandez, Ariel; Topological Dynamics for Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies; CRC Press - Taylor & Francis Group; 1; 2022; 228  
dc.identifier.isbn
9781032366326  
dc.identifier.uri
http://hdl.handle.net/11336/208775  
dc.description.abstract
The leveraging of artificial intelligence (AI), dynamical systems have found a fertile ground for development. Machine learning is currently discovering models that provide the physical underpinnings of time series data. However, such heavily parametrized models hardly ever yield physical laws. The problem becomes daunting as we turn to the multiscale complexities of biology, biomedicine or cosmology. This book addresses this imperative as it takes the problem of AI-based model discovery to the next level where “machine intuition” is operationally defined as recognizer of rough patterns within a hierarchical representation of the time series. Thus, the book introduces topological methods that enable metamodel discovery and the proper computational tools to decode the metamodel into a relevant inferential framework that ultimately yields physical laws. Parsimonious models are traditionally cast as “sparse systems of differential equations on latent coordinates”. As this book argues, this is not the format typically adopted by AI, given the “dimensionality curse” associated with complex realities. AI demands a paradigm shift, with dynamic information translated into metamodels based on AI-interpretable patterns. These methods advance model discovery, enabling reverse engineering of time series arising from vastly complex realities that are commonplace in a broad range of fields, from biology to cosmology.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
CRC Press - Taylor & Francis Group  
dc.rights
info:eu-repo/semantics/closedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Topology  
dc.subject
Dynamical Systems  
dc.subject
Artificial Intelligence  
dc.subject
Cosmology  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Topological Dynamics for Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/book  
dc.type
info:ar-repo/semantics/libro  
dc.date.updated
2023-07-06T21:24:15Z  
dc.journal.volume
1  
dc.journal.pagination
228  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1201/9781003333012  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.routledge.com/Topological-Dynamics-in-Metamodel-Discovery-with-Artificial-Intelligence/Fernandez/p/book/9781032366326