Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Libro

Topological Dynamics for Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies

Fernandez, ArielIcon
Fecha de publicación: 2022
Editorial: CRC Press - Taylor & Francis Group
ISBN: 9781032366326
Idioma: Inglés
Clasificación temática:
Matemática Aplicada

Resumen

The leveraging of artificial intelligence (AI), dynamical systems have found a fertile ground for development. Machine learning is currently discovering models that provide the physical underpinnings of time series data. However, such heavily parametrized models hardly ever yield physical laws. The problem becomes daunting as we turn to the multiscale complexities of biology, biomedicine or cosmology. This book addresses this imperative as it takes the problem of AI-based model discovery to the next level where “machine intuition” is operationally defined as recognizer of rough patterns within a hierarchical representation of the time series. Thus, the book introduces topological methods that enable metamodel discovery and the proper computational tools to decode the metamodel into a relevant inferential framework that ultimately yields physical laws. Parsimonious models are traditionally cast as “sparse systems of differential equations on latent coordinates”. As this book argues, this is not the format typically adopted by AI, given the “dimensionality curse” associated with complex realities. AI demands a paradigm shift, with dynamic information translated into metamodels based on AI-interpretable patterns. These methods advance model discovery, enabling reverse engineering of time series arising from vastly complex realities that are commonplace in a broad range of fields, from biology to cosmology.
Palabras clave: Topology , Dynamical Systems , Artificial Intelligence , Cosmology
Ver el registro completo
 
Archivos asociados
Tamaño: 33.65Mb
Formato: PDF
.
 
Licencia
info:eu-repo/semantics/closedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/208775
DOI: https://doi.org/10.1201/9781003333012
URL: https://www.routledge.com/Topological-Dynamics-in-Metamodel-Discovery-with-Artif
Colecciones
Libros(INQUISUR)
Libros de INST.DE QUIMICA DEL SUR
Citación
Fernandez, Ariel; Topological Dynamics for Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies; CRC Press - Taylor & Francis Group; 1; 2022; 228
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES