Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MotSASi: Functional short linear motifs (SLiMs) prediction based on genomic single nucleotide variants and structural data

Martín, MarianoIcon ; Brunello, Franco GinoIcon ; Modenutti, Carlos PabloIcon ; Nicola, Juan PabloIcon ; Marti, Marcelo AdrianIcon
Fecha de publicación: 05/02/2022
Editorial: Elsevier France-Editions Scientifiques Medicales Elsevier
Revista: Biochimie
ISSN: 0300-9084
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioquímica y Biología Molecular

Resumen

Short linear motifs (SLiMs) are key to cell physiology mediating reversible protein-protein interactions. Precise identification of SLiMs remains a challenge, being the main drawback of most bioinformatic prediction tools, their low specificity (high number of false positives). An important, usually overlooked, aspect is the relation between SLiMs mutations and disease. The presence of variants in each residue position can be used to assess the relevance of the corresponding residue(s) for protein function, and its (in)tolerance to change. In the present work, we combined sequence variant information and structural analysis of the energetic impact of single amino acid substitution (SAS) in SLiM-Receptor complex structure, and showed that it improves prediction of true functional SLiMs. Our strategy is based on building a SAS tolerance matrix that shows, for each position, whether one of the possible 19 SAS is tolerated or not. Herein we present the MotSASi strategy and analyze in detail 3 SLiMs involved in intracellular protein trafficking (phospho-independent tyrosine-based motif (NPx[Y/F]), type 1 PDZ-binding motif ([S/T]x[V/I/L]COOH) and tryptophan-acidic motif ([L/M]xW[D/E])). Our results show that inclusion of variant and structure information improves both prediction of true SLiMs and rejection of false positives, while also allowing better classification of variants inside SLiMs, a result with a direct impact in clinical genomics.
Palabras clave: CLINVAR , FOLDX , GNOMAD , SHORT LINEAR MOTIFS (SLIMS) , SINGLE AMINO ACID SUBSTITUTION (SAS) , SINGLE NUCLEOTIDE VARIANTS (SNV)
Ver el registro completo
 
Archivos asociados
Tamaño: 2.513Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/207436
URL: https://linkinghub.elsevier.com/retrieve/pii/S0300908422000311
DOI: https://doi.org/10.1016/j.biochi.2022.02.002
Colecciones
Articulos(CIBICI)
Articulos de CENTRO DE INV.EN BIOQUI.CLINICA E INMUNOLOGIA
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Martín, Mariano; Brunello, Franco Gino; Modenutti, Carlos Pablo; Nicola, Juan Pablo; Marti, Marcelo Adrian; MotSASi: Functional short linear motifs (SLiMs) prediction based on genomic single nucleotide variants and structural data; Elsevier France-Editions Scientifiques Medicales Elsevier; Biochimie; 197; 5-2-2022; 59-73
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES