Mostrar el registro sencillo del ítem

dc.contributor.author
Buezas, Fernando Salvador  
dc.contributor.author
Rosales, Marta Beatriz  
dc.contributor.author
Sampaio, Rubens  
dc.date.available
2015-09-23T18:23:20Z  
dc.date.issued
2013-10  
dc.identifier.citation
Buezas, Fernando Salvador; Rosales, Marta Beatriz; Sampaio, Rubens; Propagation of uncertainties and multimodality in the impact problem of two elastic bodies; Pergamon-Elsevier Science Ltd; International Journal of Mechanical Sciences; 75; 10-2013; 145-155  
dc.identifier.issn
0020-7403  
dc.identifier.uri
http://hdl.handle.net/11336/2070  
dc.description.abstract
An uncertainty quantification study is carried out for the problem of the frontal collision of two elastic bodies. The time of contact and the resultant force function involved during the collision are the quantities of interest. If the initial conditions and the mechanical and geometrical properties were known, the response prediction would be deterministic. However, if the data contains any uncertainty, a stochastic approach becomes appropriate. Based on the Principle of Maximum Entropy (PME), and under certain restrictions on the parameter values, we derive the probability density function (PDF) for each of the stochastic parameters to construct a probabilistic model. Two cases are dealt with: one of a collision involving two spheres and another of a collision of two discs. In the first case, a parameter involving geometry and material properties is assumed stochastic. Since a functional relationship exists, the propagation of the uncertainty of the time of contact can be done symbolically. However, the interaction force function can only be computed from the solution of a nonlinear ordinary differential equation. Given the PDF of the parameter, the problem of uncertainty propagation is tackled using Monte Carlo simulations. The comparison of both approaches yields an excellent agreement. With respect to the collision of two discs, first the small deformation problem, within the Hertz theory, is addressed with a Monte Carlo method. When the discs undergo large deformations, the problem is approximated using the equations of Finite Elasticity discretized by the finite element method (FEM) and combined with Monte Carlo simulations. In a first illustration, the modulus of elasticity is assumed stochastic with a gamma PDF. Further, the disc collision problem is analyzed when two parameters are stochastic: the modulus of elasticity and the Poisson's ratio. It is shown that under certain dispersion ranges, the PDF of the interaction force function undergoes a qualitatively change exhibiting bimodality.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
COLLISION  
dc.subject
ELASTIC BODIES  
dc.subject
MULTIMODALITY  
dc.subject
UNCERTAINTY  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Propagation of uncertainties and multimodality in the impact problem of two elastic bodies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
75  
dc.journal.pagination
145-155  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Buezas, Fernando Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina  
dc.description.fil
Fil: Rosales, Marta Beatriz. Universidad Nacional del Sur. Departamento de Ingeniería. Area Estabilidad; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sampaio, Rubens. Pontifícia Universidade Católica do Rio de Janeiro; Brasil  
dc.journal.title
International Journal of Mechanical Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijmecsci.2013.05.009  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S002074031300163X