Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Propagation of uncertainties and multimodality in the impact problem of two elastic bodies

Buezas, Fernando SalvadorIcon ; Rosales, Marta BeatrizIcon ; Sampaio, Rubens
Fecha de publicación: 10/2013
Editorial: Pergamon-Elsevier Science Ltd
Revista: International Journal of Mechanical Sciences
ISSN: 0020-7403
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

An uncertainty quantification study is carried out for the problem of the frontal collision of two elastic bodies. The time of contact and the resultant force function involved during the collision are the quantities of interest. If the initial conditions and the mechanical and geometrical properties were known, the response prediction would be deterministic. However, if the data contains any uncertainty, a stochastic approach becomes appropriate. Based on the Principle of Maximum Entropy (PME), and under certain restrictions on the parameter values, we derive the probability density function (PDF) for each of the stochastic parameters to construct a probabilistic model. Two cases are dealt with: one of a collision involving two spheres and another of a collision of two discs. In the first case, a parameter involving geometry and material properties is assumed stochastic. Since a functional relationship exists, the propagation of the uncertainty of the time of contact can be done symbolically. However, the interaction force function can only be computed from the solution of a nonlinear ordinary differential equation. Given the PDF of the parameter, the problem of uncertainty propagation is tackled using Monte Carlo simulations. The comparison of both approaches yields an excellent agreement. With respect to the collision of two discs, first the small deformation problem, within the Hertz theory, is addressed with a Monte Carlo method. When the discs undergo large deformations, the problem is approximated using the equations of Finite Elasticity discretized by the finite element method (FEM) and combined with Monte Carlo simulations. In a first illustration, the modulus of elasticity is assumed stochastic with a gamma PDF. Further, the disc collision problem is analyzed when two parameters are stochastic: the modulus of elasticity and the Poisson's ratio. It is shown that under certain dispersion ranges, the PDF of the interaction force function undergoes a qualitatively change exhibiting bimodality.
Palabras clave: COLLISION , ELASTIC BODIES , MULTIMODALITY , UNCERTAINTY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.994Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/2070
DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.009
URL: http://www.sciencedirect.com/science/article/pii/S002074031300163X
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Buezas, Fernando Salvador; Rosales, Marta Beatriz; Sampaio, Rubens; Propagation of uncertainties and multimodality in the impact problem of two elastic bodies; Pergamon-Elsevier Science Ltd; International Journal of Mechanical Sciences; 75; 10-2013; 145-155
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES