Mostrar el registro sencillo del ítem
dc.contributor.author
Martin, Rafael Fernando

dc.contributor.author
Parisi, Daniel Ricardo

dc.date.available
2023-08-04T15:05:23Z
dc.date.issued
2020-02
dc.identifier.citation
Martin, Rafael Fernando; Parisi, Daniel Ricardo; Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network; Elsevier Science; Neurocomputing; 379; 2-2020; 130-140
dc.identifier.issn
0925-2312
dc.identifier.uri
http://hdl.handle.net/11336/206983
dc.description.abstract
Data-driven simulation of pedestrian dynamics is an incipient and promising approach for building reliable microscopic pedestrian models. We propose a methodology based on generalized regression neural networks, which does not have to deal with a huge number of free parameters as in the case of multilayer neural networks. Although the method is general, we focus on the one pedestrian - one obstacle problem. Experimental data were collected in a motion capture laboratory providing high-precision trajectories. The proposed model allows us to simulate the trajectory of a pedestrian avoiding an obstacle from any direction. Together with the methodology specifications, we provide the data set needed for performing the simulations of this kind of pedestrian dynamic system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
DATA-DRIVEN SIMULATION
dc.subject
GENERALIZED REGRESSION NEURAL NETWORK
dc.subject
NAVIGATION
dc.subject
PEDESTRIAN DYNAMICS
dc.subject
STEERING
dc.subject.classification
Otras Ciencias Físicas

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-04T12:20:05Z
dc.journal.volume
379
dc.journal.pagination
130-140
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Martin, Rafael Fernando. Instituto Tecnológico de Buenos Aires; Argentina
dc.description.fil
Fil: Parisi, Daniel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
dc.journal.title
Neurocomputing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0925231219315000
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neucom.2019.10.062
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.07702
Archivos asociados