Mostrar el registro sencillo del ítem

dc.contributor.author
Martin, Rafael Fernando  
dc.contributor.author
Parisi, Daniel Ricardo  
dc.date.available
2023-08-04T15:05:23Z  
dc.date.issued
2020-02  
dc.identifier.citation
Martin, Rafael Fernando; Parisi, Daniel Ricardo; Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network; Elsevier Science; Neurocomputing; 379; 2-2020; 130-140  
dc.identifier.issn
0925-2312  
dc.identifier.uri
http://hdl.handle.net/11336/206983  
dc.description.abstract
Data-driven simulation of pedestrian dynamics is an incipient and promising approach for building reliable microscopic pedestrian models. We propose a methodology based on generalized regression neural networks, which does not have to deal with a huge number of free parameters as in the case of multilayer neural networks. Although the method is general, we focus on the one pedestrian - one obstacle problem. Experimental data were collected in a motion capture laboratory providing high-precision trajectories. The proposed model allows us to simulate the trajectory of a pedestrian avoiding an obstacle from any direction. Together with the methodology specifications, we provide the data set needed for performing the simulations of this kind of pedestrian dynamic system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
DATA-DRIVEN SIMULATION  
dc.subject
GENERALIZED REGRESSION NEURAL NETWORK  
dc.subject
NAVIGATION  
dc.subject
PEDESTRIAN DYNAMICS  
dc.subject
STEERING  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-04T12:20:05Z  
dc.journal.volume
379  
dc.journal.pagination
130-140  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Martin, Rafael Fernando. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Parisi, Daniel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina  
dc.journal.title
Neurocomputing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0925231219315000  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neucom.2019.10.062  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.07702