Artículo
Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network
Fecha de publicación:
02/2020
Editorial:
Elsevier Science
Revista:
Neurocomputing
ISSN:
0925-2312
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Data-driven simulation of pedestrian dynamics is an incipient and promising approach for building reliable microscopic pedestrian models. We propose a methodology based on generalized regression neural networks, which does not have to deal with a huge number of free parameters as in the case of multilayer neural networks. Although the method is general, we focus on the one pedestrian - one obstacle problem. Experimental data were collected in a motion capture laboratory providing high-precision trajectories. The proposed model allows us to simulate the trajectory of a pedestrian avoiding an obstacle from any direction. Together with the methodology specifications, we provide the data set needed for performing the simulations of this kind of pedestrian dynamic system.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Martin, Rafael Fernando; Parisi, Daniel Ricardo; Data-driven simulation of pedestrian collision avoidance with a nonparametric neural network; Elsevier Science; Neurocomputing; 379; 2-2020; 130-140
Compartir
Altmétricas