Mostrar el registro sencillo del ítem
dc.contributor.author
Mateos, Diego Martín
dc.contributor.author
Morana, Federico Maximiliano
dc.contributor.author
Aimar, Hugo Alejandro
dc.date.available
2023-08-03T14:03:40Z
dc.date.issued
2022-03
dc.identifier.citation
Mateos, Diego Martín; Morana, Federico Maximiliano; Aimar, Hugo Alejandro; A graph complexity measure based on the spectral analysis of the Laplace operator; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 156; 111817; 3-2022; 1-9
dc.identifier.issn
0960-0779
dc.identifier.uri
http://hdl.handle.net/11336/206805
dc.description.abstract
In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis of the Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm of the vector of eigenvalues of both the graph and its complement and take their product. Doing so, we obtain a quantity that satisfies two basic properties that are the expected for a measure of complexity. First, complexity of fully connected and fully disconnected graphs vanish. Second, complexity of complementary graphs coincide. This notion of complexity allows us to distinguish different kinds of graphs by placing them in a “croissant-shaped” region of the plane link density - complexity, highlighting some features like connectivity, concentration, uniformity or regularity and existence of clique-like clusters. Indeed, considering graphs with a fixed number of nodes, by plotting the link density versus the complexity we find that graphs generated by different methods take place at different regions of the plane. We consider some of the paradigmatic randomly generated graphs, in particular the Erdös-Rényi, the Watts-Strogatz and the Barabási-Albert models. Also, we place some particular, let us say deterministic, well known hand-crafted graphs, to wit, lattices, stars, hyper-concentrated and cliques-containing graphs. It is worthy noticing that these deterministic classical models of graphs depict the boundary of the croissant-shaped region. Finally, as an application to graphs generated by real measurements, we consider the brain connectivity graphs from two epileptic patients obtained from magnetoencephalography (MEG) recording, both in a baseline period and in ictal periods (epileptic seizures). In this case, our definition of complexity could be used as a tool for discerning between states, by the analysis of differences at distinct frequencies of the MEG recording.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Complexity
dc.subject
Laplacian
dc.subject
Graph
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A graph complexity measure based on the spectral analysis of the Laplace operator
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-08-03T12:02:29Z
dc.journal.volume
156
dc.journal.number
111817
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Mateos, Diego Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Autonoma de Entre Rios. Facultad de Ciencia y Tecnologia. Departamento de Fisica.; Argentina
dc.description.fil
Fil: Morana, Federico Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Chaos, Solitons And Fractals
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0960077922000285
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.chaos.2022.111817
Archivos asociados