Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A graph complexity measure based on the spectral analysis of the Laplace operator

Mateos, Diego MartínIcon ; Morana, Federico MaximilianoIcon ; Aimar, Hugo AlejandroIcon
Fecha de publicación: 03/2022
Editorial: Pergamon-Elsevier Science Ltd
Revista: Chaos, Solitons And Fractals
ISSN: 0960-0779
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis of the Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm of the vector of eigenvalues of both the graph and its complement and take their product. Doing so, we obtain a quantity that satisfies two basic properties that are the expected for a measure of complexity. First, complexity of fully connected and fully disconnected graphs vanish. Second, complexity of complementary graphs coincide. This notion of complexity allows us to distinguish different kinds of graphs by placing them in a “croissant-shaped” region of the plane link density - complexity, highlighting some features like connectivity, concentration, uniformity or regularity and existence of clique-like clusters. Indeed, considering graphs with a fixed number of nodes, by plotting the link density versus the complexity we find that graphs generated by different methods take place at different regions of the plane. We consider some of the paradigmatic randomly generated graphs, in particular the Erdös-Rényi, the Watts-Strogatz and the Barabási-Albert models. Also, we place some particular, let us say deterministic, well known hand-crafted graphs, to wit, lattices, stars, hyper-concentrated and cliques-containing graphs. It is worthy noticing that these deterministic classical models of graphs depict the boundary of the croissant-shaped region. Finally, as an application to graphs generated by real measurements, we consider the brain connectivity graphs from two epileptic patients obtained from magnetoencephalography (MEG) recording, both in a baseline period and in ictal periods (epileptic seizures). In this case, our definition of complexity could be used as a tool for discerning between states, by the analysis of differences at distinct frequencies of the MEG recording.
Palabras clave: Complexity , Laplacian , Graph
Ver el registro completo
 
Archivos asociados
Tamaño: 2.196Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/206805
URL: https://www.sciencedirect.com/science/article/pii/S0960077922000285
DOI: https://doi.org/10.1016/j.chaos.2022.111817
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Mateos, Diego Martín; Morana, Federico Maximiliano; Aimar, Hugo Alejandro; A graph complexity measure based on the spectral analysis of the Laplace operator; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 156; 111817; 3-2022; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES