Mostrar el registro sencillo del ítem

dc.contributor.author
Alejo, Javier  
dc.contributor.author
Montes Rojas, Gabriel Victorio  
dc.contributor.author
Sosa Escudero, Walter  
dc.date.available
2023-08-03T12:14:30Z  
dc.date.issued
2022-03  
dc.identifier.citation
Alejo, Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter; RIF regression via sensitivity curves; Springer Heidelberg; Statistical Methods And Applications; 32; 1; 3-2022; 329-345  
dc.identifier.issn
1618-2510  
dc.identifier.uri
http://hdl.handle.net/11336/206710  
dc.description.abstract
This paper proposes an empirical method to implement the recentered influence function (RIF) regression of Firpo et al. (Econometrica 77(3):953–973, 2009), a relevant method to study the effect of covariates on many statistics beyond the mean. In empirically relevant situations where the influence function is not available or difficult to compute, we suggest to use the sensitivity curve (as reported by Tukey in Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977) as a feasible alternative. This may be computationally cumbersome when the sample size is large. The relevance of the proposed strategy derives from the fact that, under general conditions, the sensitivity curve converges in probability to the influence function. In order to save computational time we propose to use a cubic splines non-parametric method for a random subsample and then to interpolate to the rest of the cases where it was not computed. Monte Carlo simulations show good finite sample properties. We illustrate the proposed estimator with an application to the polarization index of Duclos et al. (Econometrica 72(6):1737–1772, 2004).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Heidelberg  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INEQUALITY  
dc.subject
POLARIZATION  
dc.subject
RECENTERED INFLUENCE FUNCTION  
dc.subject
SENSITIVITY  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
RIF regression via sensitivity curves  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-08-02T17:54:13Z  
dc.journal.volume
32  
dc.journal.number
1  
dc.journal.pagination
329-345  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Alejo, Javier. Universidad de la República; Uruguay  
dc.description.fil
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina  
dc.description.fil
Fil: Sosa Escudero, Walter. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Statistical Methods And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10260-022-00649-y