Artículo
RIF regression via sensitivity curves
Fecha de publicación:
03/2022
Editorial:
Springer Heidelberg
Revista:
Statistical Methods And Applications
ISSN:
1618-2510
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper proposes an empirical method to implement the recentered influence function (RIF) regression of Firpo et al. (Econometrica 77(3):953–973, 2009), a relevant method to study the effect of covariates on many statistics beyond the mean. In empirically relevant situations where the influence function is not available or difficult to compute, we suggest to use the sensitivity curve (as reported by Tukey in Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977) as a feasible alternative. This may be computationally cumbersome when the sample size is large. The relevance of the proposed strategy derives from the fact that, under general conditions, the sensitivity curve converges in probability to the influence function. In order to save computational time we propose to use a cubic splines non-parametric method for a random subsample and then to interpolate to the rest of the cases where it was not computed. Monte Carlo simulations show good finite sample properties. We illustrate the proposed estimator with an application to the polarization index of Duclos et al. (Econometrica 72(6):1737–1772, 2004).
Palabras clave:
INEQUALITY
,
POLARIZATION
,
RECENTERED INFLUENCE FUNCTION
,
SENSITIVITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Alejo, Javier; Montes Rojas, Gabriel Victorio; Sosa Escudero, Walter; RIF regression via sensitivity curves; Springer Heidelberg; Statistical Methods And Applications; 32; 1; 3-2022; 329-345
Compartir
Altmétricas