Mostrar el registro sencillo del ítem
dc.contributor.author
Cochero, Joaquin
dc.contributor.author
Pattori, Lorenzo
dc.contributor.author
Balsalobre, Agustin
dc.contributor.author
Ceccarelli, Soledad
dc.contributor.author
Marti, Gerardo Anibal
dc.date.available
2023-08-03T11:47:35Z
dc.date.issued
2022-05
dc.identifier.citation
Cochero, Joaquin; Pattori, Lorenzo; Balsalobre, Agustin; Ceccarelli, Soledad; Marti, Gerardo Anibal; A convolutional neural network to recognize Chagas disease vectors using mobile phone images; Elsevier Science; Ecological Informatics; 68; 1015; 5-2022; 1-6
dc.identifier.issn
1574-9541
dc.identifier.uri
http://hdl.handle.net/11336/206687
dc.description.abstract
There are several identification tools that can assist researchers, technicians and the community in the recognition of Chagas vector insects (triatomines), from other insects with similar morphologies. They involve using dichotomous keys, field guides, expert knowledge or, in more recent approaches, through the classification by a neural network of high quality photographs taken in standardized conditions. The aim of this research was to develop a deep neural network to recognize triatomines (insects associated with vectorial transmission of Chagas disease) directly from photos taken with any commonly available mobile device, without any other specialized equipment. To overcome the shortcomings of taking images using specific instruments and a controlled environment an innovative machine-learning approach was used: Fastai with Pytorch, a combination of open-source software for deep learning. The Convolutional Neural Network (CNN) was trained with triatomine photos, reaching a correct identification in 94.3% of the cases. Results were validated using photos sent by citizen scientists from the GeoVin project, resulting in 91.4% of correct identification of triatomines. The CNN provides a lightweight, robust method that even works with blurred images, poor lighting and even with the presence of other subjects and objects in the same frame. Future steps include the inclusion of the CNN into the framework of the GeoVin science project, which will also allow to further train the network using the photos sent by the citizen scientists. This would allow the participation of the community in the identification and monitoring of the vector insects, particularly in regions where government-led monitoring programmes are not frequent due to their low accessibility and high costs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORK
dc.subject
CITIZEN SCIENCE
dc.subject
IMAGE CLASSIFICATION
dc.subject
TRIATOMINES
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A convolutional neural network to recognize Chagas disease vectors using mobile phone images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T17:57:36Z
dc.journal.volume
68
dc.journal.number
1015
dc.journal.pagination
1-6
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Cochero, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; Argentina
dc.description.fil
Fil: Pattori, Lorenzo. No especifíca;
dc.description.fil
Fil: Balsalobre, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina
dc.description.fil
Fil: Ceccarelli, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina
dc.description.fil
Fil: Marti, Gerardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina
dc.journal.title
Ecological Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S157495412200036X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2022.101587
Archivos asociados