Mostrar el registro sencillo del ítem

dc.contributor.author
Cochero, Joaquin  
dc.contributor.author
Pattori, Lorenzo  
dc.contributor.author
Balsalobre, Agustin  
dc.contributor.author
Ceccarelli, Soledad  
dc.contributor.author
Marti, Gerardo Anibal  
dc.date.available
2023-08-03T11:47:35Z  
dc.date.issued
2022-05  
dc.identifier.citation
Cochero, Joaquin; Pattori, Lorenzo; Balsalobre, Agustin; Ceccarelli, Soledad; Marti, Gerardo Anibal; A convolutional neural network to recognize Chagas disease vectors using mobile phone images; Elsevier Science; Ecological Informatics; 68; 1015; 5-2022; 1-6  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/206687  
dc.description.abstract
There are several identification tools that can assist researchers, technicians and the community in the recognition of Chagas vector insects (triatomines), from other insects with similar morphologies. They involve using dichotomous keys, field guides, expert knowledge or, in more recent approaches, through the classification by a neural network of high quality photographs taken in standardized conditions. The aim of this research was to develop a deep neural network to recognize triatomines (insects associated with vectorial transmission of Chagas disease) directly from photos taken with any commonly available mobile device, without any other specialized equipment. To overcome the shortcomings of taking images using specific instruments and a controlled environment an innovative machine-learning approach was used: Fastai with Pytorch, a combination of open-source software for deep learning. The Convolutional Neural Network (CNN) was trained with triatomine photos, reaching a correct identification in 94.3% of the cases. Results were validated using photos sent by citizen scientists from the GeoVin project, resulting in 91.4% of correct identification of triatomines. The CNN provides a lightweight, robust method that even works with blurred images, poor lighting and even with the presence of other subjects and objects in the same frame. Future steps include the inclusion of the CNN into the framework of the GeoVin science project, which will also allow to further train the network using the photos sent by the citizen scientists. This would allow the participation of the community in the identification and monitoring of the vector insects, particularly in regions where government-led monitoring programmes are not frequent due to their low accessibility and high costs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORK  
dc.subject
CITIZEN SCIENCE  
dc.subject
IMAGE CLASSIFICATION  
dc.subject
TRIATOMINES  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A convolutional neural network to recognize Chagas disease vectors using mobile phone images  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T17:57:36Z  
dc.journal.volume
68  
dc.journal.number
1015  
dc.journal.pagination
1-6  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Cochero, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; Argentina  
dc.description.fil
Fil: Pattori, Lorenzo. No especifíca;  
dc.description.fil
Fil: Balsalobre, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina  
dc.description.fil
Fil: Ceccarelli, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina  
dc.description.fil
Fil: Marti, Gerardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S157495412200036X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2022.101587