Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A convolutional neural network to recognize Chagas disease vectors using mobile phone images

Cochero, JoaquinIcon ; Pattori, Lorenzo; Balsalobre, AgustinIcon ; Ceccarelli, SoledadIcon ; Marti, Gerardo AnibalIcon
Fecha de publicación: 05/2022
Editorial: Elsevier Science
Revista: Ecological Informatics
ISSN: 1574-9541
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

There are several identification tools that can assist researchers, technicians and the community in the recognition of Chagas vector insects (triatomines), from other insects with similar morphologies. They involve using dichotomous keys, field guides, expert knowledge or, in more recent approaches, through the classification by a neural network of high quality photographs taken in standardized conditions. The aim of this research was to develop a deep neural network to recognize triatomines (insects associated with vectorial transmission of Chagas disease) directly from photos taken with any commonly available mobile device, without any other specialized equipment. To overcome the shortcomings of taking images using specific instruments and a controlled environment an innovative machine-learning approach was used: Fastai with Pytorch, a combination of open-source software for deep learning. The Convolutional Neural Network (CNN) was trained with triatomine photos, reaching a correct identification in 94.3% of the cases. Results were validated using photos sent by citizen scientists from the GeoVin project, resulting in 91.4% of correct identification of triatomines. The CNN provides a lightweight, robust method that even works with blurred images, poor lighting and even with the presence of other subjects and objects in the same frame. Future steps include the inclusion of the CNN into the framework of the GeoVin science project, which will also allow to further train the network using the photos sent by the citizen scientists. This would allow the participation of the community in the identification and monitoring of the vector insects, particularly in regions where government-led monitoring programmes are not frequent due to their low accessibility and high costs.
Palabras clave: ARTIFICIAL NEURAL NETWORK , CITIZEN SCIENCE , IMAGE CLASSIFICATION , TRIATOMINES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.213Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/206687
URL: https://www.sciencedirect.com/science/article/abs/pii/S157495412200036X
DOI: http://dx.doi.org/10.1016/j.ecoinf.2022.101587
Colecciones
Articulos(CEPAVE)
Articulos de CENTRO DE EST.PARASITOL.Y DE VECTORES (I)
Articulos(ILPLA)
Articulos de INST.DE LIMNOLOGIA "DR. RAUL A. RINGUELET"
Citación
Cochero, Joaquin; Pattori, Lorenzo; Balsalobre, Agustin; Ceccarelli, Soledad; Marti, Gerardo Anibal; A convolutional neural network to recognize Chagas disease vectors using mobile phone images; Elsevier Science; Ecological Informatics; 68; 1015; 5-2022; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES