Mostrar el registro sencillo del ítem
dc.contributor.author
García, Adolfo Martín
dc.contributor.author
Escobar Grisales, Daniel
dc.contributor.author
Vásquez Correa, Juan Camilo
dc.contributor.author
Bocanegra, Yamile
dc.contributor.author
Moreno, Leonardo
dc.contributor.author
Carmona, Jairo
dc.contributor.author
Orozco Arroyave, Juan Rafael
dc.date.available
2023-07-28T15:18:13Z
dc.date.issued
2022-10
dc.identifier.citation
García, Adolfo Martín; Escobar Grisales, Daniel; Vásquez Correa, Juan Camilo; Bocanegra, Yamile; Moreno, Leonardo; et al.; Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories; Nature Research; npj Parkinson's Disease; 8; 163; 10-2022; 1-10
dc.identifier.uri
http://hdl.handle.net/11336/206010
dc.description.abstract
Action-concept outcomes are useful targets to identify Parkinson’s disease (PD) patients and differentiate between those with and without mild cognitive impairment (PD-MCI, PD-nMCI). Yet, most approaches employ burdensome examiner-dependent tasks, limiting their utility. We introduce a framework capturing action-concept markers automatically in natural speech. Patients from both subgroups and controls retold an action-laden and a non-action-laden text (AT, nAT). In each retelling, we weighed action and non-action concepts through our automated Proximity-to-Reference-Semantic-Field (P-RSF) metric, for analysis via ANCOVAs (controlling for cognitive dysfunction) and support vector machines. Patients were differentiated from controls based on AT (but not nAT) P-RSF scores. The same occurred in PD-nMCI patients. Conversely, PD-MCI patients exhibited reduced P-RSF scores for both texts. Direct discrimination between patient subgroups was not systematic, but it yielded best outcomes via AT scores. Our approach outperformed classifiers based on corpus-derived embeddings. This framework opens scalable avenues to support PD diagnosis and phenotyping.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature Research
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
PARKINSON'S DISEASE
dc.subject
ACTION SEMANTICS
dc.subject
NATURAL LANGUAGE PROCESSING
dc.subject
COGNITIVE PHENOTYPES
dc.subject.classification
Lingüística
dc.subject.classification
Lengua y Literatura
dc.subject.classification
HUMANIDADES
dc.subject.classification
Psicología
dc.subject.classification
Psicología
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-27T14:37:23Z
dc.identifier.eissn
2373-8057
dc.journal.volume
8
dc.journal.number
163
dc.journal.pagination
1-10
dc.journal.pais
Alemania
dc.description.fil
Fil: García, Adolfo Martín. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina
dc.description.fil
Fil: Escobar Grisales, Daniel. Universidad de Antioquia; Colombia
dc.description.fil
Fil: Vásquez Correa, Juan Camilo. Universidad de Antioquia; Colombia
dc.description.fil
Fil: Bocanegra, Yamile. Universidad de Antioquia; Colombia
dc.description.fil
Fil: Moreno, Leonardo. Hospital Pablo Tobón Uribe; Colombia
dc.description.fil
Fil: Carmona, Jairo. Universidad de Antioquia; Colombia
dc.description.fil
Fil: Orozco Arroyave, Juan Rafael. Universidad de Antioquia; Colombia
dc.journal.title
npj Parkinson's Disease
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41531-022-00422-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1038/s41531-022-00422-8
Archivos asociados