Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories

García, Adolfo MartínIcon ; Escobar Grisales, Daniel; Vásquez Correa, Juan Camilo; Bocanegra, Yamile; Moreno, Leonardo; Carmona, Jairo; Orozco Arroyave, Juan Rafael
Fecha de publicación: 10/2022
Editorial: Nature Research
Revista: npj Parkinson's Disease
e-ISSN: 2373-8057
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Lingüística; Psicología

Resumen

Action-concept outcomes are useful targets to identify Parkinson’s disease (PD) patients and differentiate between those with and without mild cognitive impairment (PD-MCI, PD-nMCI). Yet, most approaches employ burdensome examiner-dependent tasks, limiting their utility. We introduce a framework capturing action-concept markers automatically in natural speech. Patients from both subgroups and controls retold an action-laden and a non-action-laden text (AT, nAT). In each retelling, we weighed action and non-action concepts through our automated Proximity-to-Reference-Semantic-Field (P-RSF) metric, for analysis via ANCOVAs (controlling for cognitive dysfunction) and support vector machines. Patients were differentiated from controls based on AT (but not nAT) P-RSF scores. The same occurred in PD-nMCI patients. Conversely, PD-MCI patients exhibited reduced P-RSF scores for both texts. Direct discrimination between patient subgroups was not systematic, but it yielded best outcomes via AT scores. Our approach outperformed classifiers based on corpus-derived embeddings. This framework opens scalable avenues to support PD diagnosis and phenotyping.
Palabras clave: PARKINSON'S DISEASE , ACTION SEMANTICS , NATURAL LANGUAGE PROCESSING , COGNITIVE PHENOTYPES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.496Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/206010
URL: https://www.nature.com/articles/s41531-022-00422-8
DOI: https://doi.org/10.1038/s41531-022-00422-8
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
García, Adolfo Martín; Escobar Grisales, Daniel; Vásquez Correa, Juan Camilo; Bocanegra, Yamile; Moreno, Leonardo; et al.; Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories; Nature Research; npj Parkinson's Disease; 8; 163; 10-2022; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES