Mostrar el registro sencillo del ítem
dc.contributor.author
Cristián Huck Iriart
dc.contributor.author
Figueroa, Santiago J. A.
dc.contributor.author
Andrini, Leandro Ruben
dc.contributor.author
Riddick, Maximiliano Luis
dc.date.available
2023-07-26T15:12:27Z
dc.date.issued
2020
dc.identifier.citation
A machine learning approach applied to determine formal oxidation state of 3D compounds; 30th Annual Users Meeting of the Brazilian Synchrotron Light Laboratory; Campinas; Brasil; 2020; 44-44
dc.identifier.uri
http://hdl.handle.net/11336/205605
dc.description.abstract
X-ray-absorption K-edge shifts of manganese, cobalt, and copper have been measured in different reference compounds at different structures and in different synchrotron beamlines in order to see if is possible using this edge shifts and machine learning methods to obtain information on the oxidation state of an unknown compound. In all cases, the shifts are the same sign, a fact that points to the absence of a significant uncompensated charge transfer from one elemental constituent to another. Identifying the edge shifts as core-level shifts, the Watson-Hudis-Perlman charge-compensation model is used on these systems, following the method proposed by Capehart et al. We analyze the shift in energy from the pre-peak (taking E = 0; internal reference point) to fulfill a certain fixed area. Due to this method employ an internal reference point, it is independent on the beamline energy calibration. In our first results combining K-edge spectra of Mn, Co and Cu samples at LNLS, ALBA, ESRF and Spring-8, the energy shifts have similarities at the same formal oxidation state. The goal is to get a large number of K-edge spectra obtained from different light sources in order to propose a generalized statistical analysis that calculates the oxidation state of a sample with a certain confidence level using this methodology. This algorithm to calculates oxidation states in now tested with several spectra of references of 3d materials (from Ti-K to Zn-K) and is incorporated into a program that does the estimation independently on the light source and establish limits between which the method is reliable
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Brazilian Synchrotron Light Laboratory
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ABSORPTION
dc.subject
XANES
dc.subject
MACHINE-LEARNING
dc.subject
ALGORITHMS
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A machine learning approach applied to determine formal oxidation state of 3D compounds
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-12-05T16:27:01Z
dc.journal.pagination
44-44
dc.journal.pais
Brasil
dc.journal.ciudad
Campinas
dc.description.fil
Fil: Cristián Huck Iriart. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
dc.description.fil
Fil: Figueroa, Santiago J. A.. Brazilian Center For Research In Energy And Materials; Brasil. Brazilian Synchrotron Light Laboratory; Brasil
dc.description.fil
Fil: Andrini, Leandro Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Riddick, Maximiliano Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Matemática de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://inis.iaea.org/collection/NCLCollectionStore/_Public/52/038/52038449.pdf?r=1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://inis.iaea.org/search/search.aspx?orig_q=RN:52038473
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Encuentro
dc.description.nombreEvento
30th Annual Users Meeting of the Brazilian Synchrotron Light Laboratory
dc.date.evento
2020-11-09
dc.description.ciudadEvento
Campinas
dc.description.paisEvento
Brasil
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Brazilian Synchrotron Light Laboratory
dc.source.revista
30th Annual Users Meeting of the Brazilian Synchrotron Light Laboratory
dc.date.eventoHasta
2020-11-12
dc.type
Encuentro
Archivos asociados