Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A machine learning approach applied to determine formal oxidation state of 3D compounds

Cristián Huck Iriart; Figueroa, Santiago J. A.; Andrini, Leandro RubenIcon ; Riddick, Maximiliano LuisIcon
Tipo del evento: Encuentro
Nombre del evento: 30th Annual Users Meeting of the Brazilian Synchrotron Light Laboratory
Fecha del evento: 09/11/2020
Institución Organizadora: Brazilian Synchrotron Light Laboratory;
Título de la revista: 30th Annual Users Meeting of the Brazilian Synchrotron Light Laboratory
Editorial: Brazilian Synchrotron Light Laboratory
Idioma: Inglés
Clasificación temática:
Otras Ciencias Químicas

Resumen

X-ray-absorption K-edge shifts of manganese, cobalt, and copper have been measured in different reference compounds at different structures and in different synchrotron beamlines in order to see if is possible using this edge shifts and machine learning methods to obtain information on the oxidation state of an unknown compound. In all cases, the shifts are the same sign, a fact that points to the absence of a significant uncompensated charge transfer from one elemental constituent to another. Identifying the edge shifts as core-level shifts, the Watson-Hudis-Perlman charge-compensation model is used on these systems, following the method proposed by Capehart et al. We analyze the shift in energy from the pre-peak (taking E = 0; internal reference point) to fulfill a certain fixed area. Due to this method employ an internal reference point, it is independent on the beamline energy calibration. In our first results combining K-edge spectra of Mn, Co and Cu samples at LNLS, ALBA, ESRF and Spring-8, the energy shifts have similarities at the same formal oxidation state. The goal is to get a large number of K-edge spectra obtained from different light sources in order to propose a generalized statistical analysis that calculates the oxidation state of a sample with a certain confidence level using this methodology. This algorithm to calculates oxidation states in now tested with several spectra of references of 3d materials (from Ti-K to Zn-K) and is incorporated into a program that does the estimation independently on the light source and establish limits between which the method is reliable
Palabras clave: ABSORPTION , XANES , MACHINE-LEARNING , ALGORITHMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 276.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205605
URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/52/038/52038449.pdf?
URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:52038473
Colecciones
Eventos(INIFTA)
Eventos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
A machine learning approach applied to determine formal oxidation state of 3D compounds; 30th Annual Users Meeting of the Brazilian Synchrotron Light Laboratory; Campinas; Brasil; 2020; 44-44
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES