Mostrar el registro sencillo del ítem
dc.contributor.author
Gerling Konrad, Santiago
dc.contributor.author
Masson, Favio Roman
dc.date.available
2023-07-26T01:49:52Z
dc.date.issued
2021
dc.identifier.citation
Pedestrian skeleton tracking using openPose and probabilistic filtering; IEEE Biennial Congress of Argentina (ARGENCON); Argentina; 2020; 1-7
dc.identifier.isbn
978-1-7281-5958-4
dc.identifier.uri
http://hdl.handle.net/11336/205498
dc.description.abstract
An essential task to prevent pedestrian injuries by an autonomous vehicle is the ability to correctly detect and predict its movement. A deep learning-based 2D human poses detector, as OpenPose, provides a skeleton of people present in an image captured by cameras mounted in the car. Nevertheless, these kinds of algorithms give a frame solution but do not capture the movement between them. Then, parts of the body are missed or the skeleton leaped to another part of the image where the infrastructure resembles a person. In this context, an algorithm based in the Kalman Filter algorithm to estimate the real skeleton including correlations in time and between parts of the body is presented. The algorithm was tested on videos using data provided by a vehicle moving in real scenarios. Results are presented that shown the capability of the algorithm to correct the mentioned loss of tracking.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
OPENPOSE
dc.subject
KALMAN FILTER
dc.subject
PEDESTRIAN
dc.subject
TRACKING
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Pedestrian skeleton tracking using openPose and probabilistic filtering
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-11-09T15:30:57Z
dc.journal.pagination
1-7
dc.journal.pais
Argentina
dc.journal.ciudad
Buenos Aires
dc.description.fil
Fil: Gerling Konrad, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.description.fil
Fil: Masson, Favio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9505458
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ARGENCON49523.2020.9505458
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Congreso
dc.description.nombreEvento
IEEE Biennial Congress of Argentina (ARGENCON)
dc.date.evento
2020-12-01
dc.description.paisEvento
Argentina
dc.type.publicacion
Book
dc.description.institucionOrganizadora
IEEE
dc.source.libro
2020 IEEE Congreso Bienal de Argentina (ARGENCON)
dc.date.eventoHasta
2020-12-04
dc.type
Congreso
Archivos asociados