Mostrar el registro sencillo del ítem

dc.contributor.author
Gerling Konrad, Santiago  
dc.contributor.author
Masson, Favio Roman  
dc.date.available
2023-07-26T01:49:52Z  
dc.date.issued
2021  
dc.identifier.citation
Pedestrian skeleton tracking using openPose and probabilistic filtering; IEEE Biennial Congress of Argentina (ARGENCON); Argentina; 2020; 1-7  
dc.identifier.isbn
978-1-7281-5958-4  
dc.identifier.uri
http://hdl.handle.net/11336/205498  
dc.description.abstract
An essential task to prevent pedestrian injuries by an autonomous vehicle is the ability to correctly detect and predict its movement. A deep learning-based 2D human poses detector, as OpenPose, provides a skeleton of people present in an image captured by cameras mounted in the car. Nevertheless, these kinds of algorithms give a frame solution but do not capture the movement between them. Then, parts of the body are missed or the skeleton leaped to another part of the image where the infrastructure resembles a person. In this context, an algorithm based in the Kalman Filter algorithm to estimate the real skeleton including correlations in time and between parts of the body is presented. The algorithm was tested on videos using data provided by a vehicle moving in real scenarios. Results are presented that shown the capability of the algorithm to correct the mentioned loss of tracking.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
OPENPOSE  
dc.subject
KALMAN FILTER  
dc.subject
PEDESTRIAN  
dc.subject
TRACKING  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Pedestrian skeleton tracking using openPose and probabilistic filtering  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-11-09T15:30:57Z  
dc.journal.pagination
1-7  
dc.journal.pais
Argentina  
dc.journal.ciudad
Buenos Aires  
dc.description.fil
Fil: Gerling Konrad, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Masson, Favio Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9505458  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ARGENCON49523.2020.9505458  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
IEEE Biennial Congress of Argentina (ARGENCON)  
dc.date.evento
2020-12-01  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
IEEE  
dc.source.libro
2020 IEEE Congreso Bienal de Argentina (ARGENCON)  
dc.date.eventoHasta
2020-12-04  
dc.type
Congreso