Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Pedestrian skeleton tracking using openPose and probabilistic filtering

Gerling Konrad, SantiagoIcon ; Masson, Favio RomanIcon
Tipo del evento: Congreso
Nombre del evento: IEEE Biennial Congress of Argentina (ARGENCON)
Fecha del evento: 01/12/2020
Institución Organizadora: IEEE;
Título del Libro: 2020 IEEE Congreso Bienal de Argentina (ARGENCON)
Editorial: Institute of Electrical and Electronics Engineers
ISBN: 978-1-7281-5958-4
Idioma: Inglés
Clasificación temática:
Control Automático y Robótica

Resumen

An essential task to prevent pedestrian injuries by an autonomous vehicle is the ability to correctly detect and predict its movement. A deep learning-based 2D human poses detector, as OpenPose, provides a skeleton of people present in an image captured by cameras mounted in the car. Nevertheless, these kinds of algorithms give a frame solution but do not capture the movement between them. Then, parts of the body are missed or the skeleton leaped to another part of the image where the infrastructure resembles a person. In this context, an algorithm based in the Kalman Filter algorithm to estimate the real skeleton including correlations in time and between parts of the body is presented. The algorithm was tested on videos using data provided by a vehicle moving in real scenarios. Results are presented that shown the capability of the algorithm to correct the mentioned loss of tracking.
Palabras clave: OPENPOSE , KALMAN FILTER , PEDESTRIAN , TRACKING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.200Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205498
URL: https://ieeexplore.ieee.org/document/9505458
DOI: http://dx.doi.org/10.1109/ARGENCON49523.2020.9505458
Colecciones
Eventos(IIIE)
Eventos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Pedestrian skeleton tracking using openPose and probabilistic filtering; IEEE Biennial Congress of Argentina (ARGENCON); Argentina; 2020; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES