Mostrar el registro sencillo del ítem

dc.contributor.author
Isa Jara, Ramiro Fernando  
dc.contributor.author
Pérez Sosa, Camilo José  
dc.contributor.author
Macote Yparraguirre, Erick Leonel  
dc.contributor.author
Revollo Sarmiento, Natalia Veronica  
dc.contributor.author
Lerner, Betiana  
dc.contributor.author
Miriuka, Santiago Gabriel  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Pérez, Maximiliano  
dc.contributor.author
Mertelsmann, Roland  
dc.date.available
2023-07-25T01:53:18Z  
dc.date.issued
2022-10-14  
dc.identifier.citation
Isa Jara, Ramiro Fernando; Pérez Sosa, Camilo José; Macote Yparraguirre, Erick Leonel; Revollo Sarmiento, Natalia Veronica; Lerner, Betiana; et al.; GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices; I S & T - Soc Imaging Science Technology; Journal Of Imaging Science And Technology; 8; 10; 14-10-2022; 1-18  
dc.identifier.issn
1062-3701  
dc.identifier.uri
http://hdl.handle.net/11336/205127  
dc.description.abstract
Nowadays, image analysis has a relevant role in most scientific and research areas. This process is used to extract and understand information from images to obtain a model, knowledge, and rules in the decision process. In the case of biological areas, images are acquired to describe the behavior of a biological agent in time such as cells using a mathematical and computational approach to generate a system with automatic control. In this paper, MCF7 cells are used to model their growth and death when they have been injected with a drug. These mammalian cells allow understanding of behavior, gene expression, and drug resistance to breast cancer. For this, an automatic segmentation method called GEMA is presented to analyze the apoptosis and confluence stages of culture by measuring the increase or decrease of the image area occupied by cells in microfluidic devices. In vitro, the biological experiments can be analyzed through a sequence of images taken at specific intervals of time. To automate the image segmentation, the proposed algorithm is based on a Gabor filter, a coefficient of variation (CV), and linear regression. This allows the processing of images in real time during the evolution of biological experiments. Moreover, GEMA has been compared with another three representative methods such as gold standard (manual segmentation), morphological gradient, and a semi-automatic algorithm using FIJI. The experiments show promising results, due to the proposed algorithm achieving an accuracy above 90% and a lower computation time because it requires on average 1 s to process each image. This makes it suitable for image-based real-time automatization of biological lab-on-a-chip experiments.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
I S & T - Soc Imaging Science Technology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
APOPTOSIS PROCESS  
dc.subject
BIOLOGICAL IMAGE SEGMENTATION  
dc.subject
LINEAR REGRESSION  
dc.subject
REAL-TIME ANALYSIS  
dc.subject.classification
Física de los Fluidos y Plasma  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T17:24:56Z  
dc.journal.volume
8  
dc.journal.number
10  
dc.journal.pagination
1-18  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Isa Jara, Ramiro Fernando. Escuela Superior Politécnica de Chimborazo; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pérez Sosa, Camilo José. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Macote Yparraguirre, Erick Leonel. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Lerner, Betiana. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Miriuka, Santiago Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pérez, Maximiliano. Florida International University; Estados Unidos. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Mertelsmann, Roland. Albert Ludwigs University of Freiburg; Alemania  
dc.journal.title
Journal Of Imaging Science And Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/jimaging8100281  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2313-433X/8/10/281